Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Expert Rev Respir Med ; 17(9): 787-803, 2023.
Article in English | MEDLINE | ID: mdl-37817448

ABSTRACT

INTRODUCTION: Immune-checkpoint inhibitors (IO) have significantly improved outcomes of patients with non-oncogene-addicted non-small cell lung cancer (NSCLC), becoming the first-line agents for advanced disease. However, resistance remains a significant clinical challenge, limiting their effectiveness. AREAS COVERED: Hereby, we addressed standard and innovative therapeutic approaches for NSCLC patients experiencing progression after IO treatment, discussing the emerging resistance mechanisms and the ongoing efforts to overcome them. In order to provide a complete overview of the matter, we performed a comprehensive literature search across prominent databases, including PubMed, EMBASE (Excerpta Medica dataBASE), and the Cochrane Library, and a research of the main ongoing studies on clinicaltrials.gov. EXPERT OPINION: The dynamics of progression to IO, especially in terms of time to treatment failure and burden of progressive disease, should guide the best subsequent management, together with patient clinical conditions. Long-responders to IO might benefit from continuation of IO beyond-progression, in combination with other treatments. Patients who experience early progression should be treated with salvage CT in case of preserved clinical conditions. Finally, patients who respond to IO for a considerable timeframe and who later present oligo-progression could be treated with a multimodal approach in order to maximize the benefit of immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Expert Testimony , Immunotherapy
2.
Acad Radiol ; 30(2): 276-284, 2023 02.
Article in English | MEDLINE | ID: mdl-35781400

ABSTRACT

RATIONALE AND OBJECTIVES: To evaluate the impact of COVID-19 pandemic on diagnostic imaging workload in a tertiary referral hospital. MATERIALS AND METHODS: Radiological examinations performed in pre-pandemic period (2015-2019) and in pandemic period (2020-2021) were retrospectively included. Based on epidemiological data and restriction measures, four pandemic waves were identified. For each of them, the relative change (RC) in workload was calculated and compared to the 5-year averaged workload in the corresponding pre-COVID-19 periods. Workload variations were also assessed according to technique (radiographs, CT, MRI, ultrasounds), body district (chest, abdomen, breast, musculoskeletal, head/neck, brain/spine, cardiovascular) and care setting (inpatient, outpatient, emergency imaging, pre-admission imaging). RESULTS: A total of 1384380 examinations were included. In 2020 imaging workload decreased (RC = -11%) compared to the average of the previous 5 years, while in 2021 only a minimal variation (RC = +1%) was observed. During first wave, workload was reduced for all modalities, body regions and types of care setting (RC from -86% to -10%), except for CT (RC = +3%). In subsequent waves, workload increased only for CT (mean RC = +18%) and, regarding body districts, for breast (mean RC = +23%) and cardiovascular imaging (mean RC = +23%). For all other categories, a workload comparable to pre-pandemic period was almost only restored in the fourth wave. In all pandemics periods workload decrease was mainly due to reduced outpatient activity (p < 0.001), while inpatient and emergency imaging was increased (p < 0.001). CONCLUSION: Evaluating imaging workload changes throughout COVID-19 pandemic helps to understand the response dynamics of radiological services and to improve institutional preparedness to face extreme contingency.


Subject(s)
COVID-19 , Radiology , Humans , COVID-19/epidemiology , Pandemics , Tertiary Care Centers , SARS-CoV-2 , Workload , Retrospective Studies , COVID-19 Testing
3.
Tomography ; 8(6): 2815-2827, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36548527

ABSTRACT

Growing evidence suggests that artificial intelligence tools could help radiologists in differentiating COVID-19 pneumonia from other types of viral (non-COVID-19) pneumonia. To test this hypothesis, an R-AI classifier capable of discriminating between COVID-19 and non-COVID-19 pneumonia was developed using CT chest scans of 1031 patients with positive swab for SARS-CoV-2 (n = 647) and other respiratory viruses (n = 384). The model was trained with 811 CT scans, while 220 CT scans (n = 151 COVID-19; n = 69 non-COVID-19) were used for independent validation. Four readers were enrolled to blindly evaluate the validation dataset using the CO-RADS score. A pandemic-like high suspicion scenario (CO-RADS 3 considered as COVID-19) and a low suspicion scenario (CO-RADS 3 considered as non-COVID-19) were simulated. Inter-reader agreement and performance metrics were calculated for human readers and R-AI classifier. The readers showed good agreement in assigning CO-RADS score (Gwet's AC2 = 0.71, p < 0.001). Considering human performance, accuracy = 78% and accuracy = 74% were obtained in the high and low suspicion scenarios, respectively, while the AI classifier achieved accuracy = 79% in distinguishing COVID-19 from non-COVID-19 pneumonia on the independent validation dataset. The R-AI classifier performance was equivalent or superior to human readers in all comparisons. Therefore, a R-AI classifier may support human readers in the difficult task of distinguishing COVID-19 from other types of viral pneumonia on CT imaging.


Subject(s)
COVID-19 , Pneumonia, Viral , Humans , COVID-19/diagnostic imaging , SARS-CoV-2 , Artificial Intelligence , Pneumonia, Viral/diagnostic imaging , Tomography, X-Ray Computed/methods
4.
Eur J Radiol ; 138: 109650, 2021 May.
Article in English | MEDLINE | ID: mdl-33743491

ABSTRACT

PURPOSE: The capability of lung ultrasound (LUS) to distinguish the different pulmonary patterns of COVID-19 and quantify the disease burden compared to chest CT is still unclear. METHODS: PCR-confirmed COVID-19 patients who underwent both LUS and chest CT at the Emergency Department were retrospectively analysed. In both modalities, twelve peripheral lung zones were identified and given a Severity Score basing on main lesion pattern. On CT scans the well-aerated lung volume (%WALV) was visually estimated. Per-patient and per-zone assessments of LUS classification performance taking CT findings as reference were performed, further revisioning the images in case of discordant results. Correlations between number of disease-positive lung zones, Severity Score and %WALV on both LUS and CT were assessed. The area under receiver operating characteristic curve (AUC) was calculated to determine LUS performance in detecting %WALV ≤ 70 %. RESULTS: The study included 219 COVID-19 patients with abnormal chest CT. LUS correctly identified as positive 217 (99 %) patients, but per-zone analysis showed sensitivity = 75 % and specificity = 66 %. The revision of the 121 (55 %) cases with positive LUS and negative CT revealed COVID-compatible lesions in 42 (38 %) CT scans. Number of disease-positive zones, Severity Score and %WALV between LUS and CT showed moderate correlations. The AUCs for LUS Severity Score and number of LUS-positive zones did not differ in detecting %WALV ≤ 70 %. CONCLUSION: LUS in COVID-19 is valuable for case identification but shows only moderate correlation with CT findings as for lesion patterns and severity quantification. The number of disease-positive lung zones in LUS alone was sufficient to discriminate relevant disease burden.


Subject(s)
COVID-19 , Humans , Lung/diagnostic imaging , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...