Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 109(5-1): 054309, 2024 May.
Article in English | MEDLINE | ID: mdl-38907415

ABSTRACT

Random walks have been intensively studied on regular and complex networks, which are used to represent pairwise interactions. Nonetheless, recent works have demonstrated that many real-world processes are better captured by higher-order relationships, which are naturally represented by hypergraphs. Here we study random walks on hypergraphs. Due to the higher-order nature of these mathematical objects, one can define more than one type of walks. In particular, we study the unbiased and the maximal entropy random walk on hypergraphs with two types of steps, emphasizing their similarities and differences. We characterize these dynamic processes by examining their stationary distributions and associated hitting times. To illustrate our findings, we present a toy example and conduct extensive analyses of artificial and real hypergraphs, providing insights into both their structural and dynamical properties. We hope that our findings motivate further research extending the analysis to different classes of random walks as well as to practical applications.

2.
Entropy (Basel) ; 25(11)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37998229

ABSTRACT

Metabolic networks are probably among the most challenging and important biological networks. Their study provides insight into how biological pathways work and how robust a specific organism is against an environment or therapy. Here, we propose a directed hypergraph with edge-dependent vertex weight as a novel framework to represent metabolic networks. This hypergraph-based representation captures higher-order interactions among metabolites and reactions, as well as the directionalities of reactions and stoichiometric weights, preserving all essential information. Within this framework, we propose the communicability and the search information as metrics to quantify the robustness and complexity of directed hypergraphs. We explore the implications of network directionality on these measures and illustrate a practical example by applying them to a small-scale E. coli core model. Additionally, we compare the robustness and the complexity of 30 different models of metabolism, connecting structural and biological properties. Our findings show that antibiotic resistance is associated with high structural robustness, while the complexity can distinguish between eukaryotic and prokaryotic organisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...