Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Ecol Lett ; 27(2): e14367, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38361475

ABSTRACT

Human-induced rapid environmental change (HIREC) is creating environments deviating considerably from natural habitats in which species evolved. Concurrently, climate warming is pushing species' climatic envelopes to geographic regions that offer novel ecological conditions. The persistence of species is likely affected by the interplay between the degree of ecological novelty and phenotypic plasticity, which in turn may shape an organism's range-shifting ability. Current modelling approaches that forecast animal ranges are characterized by a static representation of the relationship between habitat use and fitness, which may bias predictions under conditions imposed by HIREC. We argue that accounting for dynamic species-resource relationships can increase the ecological realism of range shift predictions. Our rationale builds on the concepts of ecological fitting, the process whereby individuals form successful novel biotic associations based on the suite of traits they carry at the time of encountering the novel condition, and behavioural plasticity, in particular learning. These concepts have revolutionized our view on fitness in novel ecological settings, and the way these processes may influence species ranges under HIREC. We have integrated them into a model of range expansion as a conceptual proof of principle highlighting the potentially substantial role of learning ability in range shifts under HIREC.


Subject(s)
Climate Change , Ecosystem , Animals , Humans , Biological Evolution
2.
J Anim Ecol ; 92(6): 1113-1123, 2023 06.
Article in English | MEDLINE | ID: mdl-37087688

ABSTRACT

Dispersal is a central life history trait that affects the ecological and evolutionary dynamics of populations and communities. The recent use of experimental evolution for the study of dispersal is a promising avenue for demonstrating valuable proofs of concept, bringing insight into alternative dispersal strategies and trade-offs, and testing the repeatability of evolutionary outcomes. Practical constraints restrict experimental evolution studies of dispersal to a set of typically small, short-lived organisms reared in artificial laboratory conditions. Here, we argue that despite these restrictions, inferences from these studies can reinforce links between theoretical predictions and empirical observations and advance our understanding of the eco-evolutionary consequences of dispersal. We illustrate how applying an integrative framework of theory, experimental evolution and natural systems can improve our understanding of dispersal evolution under more complex and realistic biological scenarios, such as the role of biotic interactions and complex dispersal syndromes.


Subject(s)
Biological Evolution , Life History Traits , Animals , Population Dynamics , Ecosystem
3.
Syst Biol ; 72(1): 106-119, 2023 05 19.
Article in English | MEDLINE | ID: mdl-36645380

ABSTRACT

Understanding the origins of diversity and the factors that drive some clades to be more diverse than others are important issues in evolutionary biology. Sophisticated SSE (state-dependent speciation and extinction) models provide insights into the association between diversification rates and the evolution of a trait. The empirical data used in SSE models and other methods is normally imperfect, yet little is known about how this can affect these models. Here, we evaluate the impact of common phylogenetic issues on inferences drawn from SSE models. Using simulated phylogenetic trees and trait information, we fitted SSE models to determine the effects of sampling fraction (phylogenetic tree completeness) and sampling fraction mis-specification on model selection and parameter estimation (speciation, extinction, and transition rates) under two sampling regimes (random and taxonomically biased). As expected, we found that both model selection and parameter estimate accuracies are reduced at lower sampling fractions (i.e., low tree completeness). Furthermore, when sampling of the tree is imbalanced across sub-clades and tree completeness is ≤ 60%, rates of false positives increase and parameter estimates are less accurate, compared to when sampling is random. Thus, when applying SSE methods to empirical datasets, there are increased risks of false inferences of trait dependent diversification when some sub-clades are heavily under-sampled. Mis-specifying the sampling fraction severely affected the accuracy of parameter estimates: parameter values were over-estimated when the sampling fraction was specified as lower than its true value, and under-estimated when the sampling fraction was specified as higher than its true value. Our results suggest that it is better to cautiously under-estimate sampling efforts, as false positives increased when the sampling fraction was over-estimated. We encourage SSE studies where the sampling fraction can be reasonably estimated and provide recommended best practices for SSE modeling. [Trait dependent diversification; SSE models; phylogenetic tree completeness; sampling fraction.].


Subject(s)
Genetic Speciation , Phylogeny , Phenotype
4.
Bioscience ; 72(11): 1118-1130, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36325105

ABSTRACT

Wallacea-the meeting point between the Asian and Australian fauna-is one of the world's largest centers of endemism. Twenty-three million years of complex geological history have given rise to a living laboratory for the study of evolution and biodiversity, highly vulnerable to anthropogenic pressures. In the present article, we review the historic and contemporary processes shaping Wallacea's biodiversity and explore ways to conserve its unique ecosystems. Although remoteness has spared many Wallacean islands from the severe overexploitation that characterizes many tropical regions, industrial-scale expansion of agriculture, mining, aquaculture and fisheries is damaging terrestrial and aquatic ecosystems, denuding endemics from communities, and threatening a long-term legacy of impoverished human populations. An impending biodiversity catastrophe demands collaborative actions to improve community-based management, minimize environmental impacts, monitor threatened species, and reduce wildlife trade. Securing a positive future for Wallacea's imperiled ecosystems requires a fundamental shift away from managing marine and terrestrial realms independently.

5.
Methods Mol Biol ; 2569: 305-326, 2022.
Article in English | MEDLINE | ID: mdl-36083455

ABSTRACT

The relative contribution of speciation and extinction into current diversity is certainly unknown, but mathematical frameworks that use genetic information have been developed to provide estimates of these processes. To that end, it is necessary to reconstruct molecular phylogenetic trees which summarize ancestor-descendant relationships as well as the timing of evolutionary events (i.e., rates). Nevertheless, diversification models show poor fit when assuming that single rate of speciation/extinction is constant over time and across lineages: species exhibit such a great variation in features that it is unlikely they give birth and die at the same pace. The state-dependent diversification framework (SSE) reconciles the species phenotypic variation with heterogeneous rates of diversification observed in a clade. This family of models allows testing contrasting hypotheses on mode of speciation, trait evolution, and its influence on speciation/extinction regimes. Although microbial species richness outnumbers diversity in plants and animals, diversification models are underused in microbiology. Here, we introduce microbiologists to models that estimate diversification rates and provide a detailed description of SSE models. Besides theoretical principles underlying the method, we also show how SSE analysis should be set up in R. We use pH evolution in Thaumarchaeota to explain its evolutionary dynamic in the light of SSE model. We hope this chapter spurs the study of trait evolution and evolutionary outcomes in microorganisms.


Subject(s)
Extinction, Biological , Genetic Speciation , Animals , Phenotype , Phylogeny
6.
J Anim Ecol ; 91(9): 1781-1796, 2022 09.
Article in English | MEDLINE | ID: mdl-35633181

ABSTRACT

Among-individual and within-individual variation in expression of seasonal migration versus residence is widespread in nature and could substantially affect the dynamics of partially migratory metapopulations inhabiting seasonally and spatially structured environments. However, such variation has rarely been explicitly incorporated into metapopulation dynamic models for partially migratory systems. We, therefore, lack general frameworks that can identify how variable seasonal movements, and associated season- and location-specific vital rates, can control system persistence. We constructed a novel conceptual framework that captures full-annual-cycle dynamics and key dimensions of metapopulation structure for partially migratory species inhabiting seasonal environments. We conceptualize among-individual variation in seasonal migration as two variable vital rates: seasonal movement probability and associated movement survival probability. We conceptualize three levels of within-individual variation (i.e. plasticity), representing seasonal or annual variation in seasonal migration or lifelong fixed strategies. We formulate these concepts as a general matrix model, which is customizable for diverse life-histories and seasonal landscapes. To illustrate how variable seasonal migration can affect metapopulation growth rate, demographic structure and vital rate elasticities, we parameterize our general models for hypothetical short- and longer-lived species. Analyses illustrate that elasticities of seasonal movement probability and associated survival probability can sometimes equal or exceed those of vital rates typically understood to substantially influence metapopulation dynamics (i.e. seasonal survival probability or fecundity), that elasticities can vary non-linearly, and that metapopulation outcomes depend on the level of within-individual plasticity. We illustrate how our general framework can be applied to evaluate the consequences of variable and changing seasonal movement probability by parameterizing our models for a real partially migratory metapopulation of European shags Gulosus aristotelis assuming lifelong fixed strategies. Given observed conditions, metapopulation growth rate was most elastic to breeding season adult survival of the resident fraction in the dominant population. However, given doubled seasonal movement probability, variation in survival during movement would become the primary driver of metapopulation dynamics. Our general conceptual and matrix model frameworks, and illustrative analyses, thereby highlight complex ways in which structured variation in seasonal migration can influence dynamics of partially migratory metapopulations, and pave the way for diverse future theoretical and empirical advances.


Subject(s)
Birds , Movement , Animal Migration/physiology , Animals , Birds/physiology , Ecosystem , Population Dynamics , Probability , Seasons
7.
Ecol Evol ; 11(21): 15289-15302, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34765178

ABSTRACT

The ability of individuals to leave a current breeding area and select a future one is important, because such decisions can have multiple consequences for individual fitness, but also for metapopulation dynamics, structure, and long-term persistence through non-random dispersal patterns. In the wild, many colonial and territorial animal species display informed dispersal strategies, where individuals use information, such as conspecific breeding success gathered during prospecting, to decide whether and where to disperse. Understanding informed dispersal strategies is essential for relating individual behavior to subsequent movements and then determining how emigration and settlement decisions affect individual fitness and demography. Although numerous theoretical studies have explored the eco-evolutionary dynamics of dispersal, very few have integrated prospecting and public information use in both emigration and settlement phases. Here, we develop an individual-based model that fills this gap and use it to explore the eco-evolutionary dynamics of informed dispersal. In a first experiment, in which only prospecting evolves, we demonstrate that selection always favors informed dispersal based on a low number of prospected patches relative to random dispersal or fully informed dispersal, except when individuals fail to discriminate better patches from worse ones. In a second experiment, which allows the concomitant evolution of both emigration probability and prospecting, we show the same prospecting strategy evolving. However, a plastic emigration strategy evolves, where individuals that breed successfully are always philopatric, while failed breeders are more likely to emigrate, especially when conspecific breeding success is low. Embedding information use and prospecting behavior in eco-evolutionary models will provide new fundamental understanding of informed dispersal and its consequences for spatial population dynamics.

8.
Biol Lett ; 17(1): 20200478, 2021 01.
Article in English | MEDLINE | ID: mdl-33497591

ABSTRACT

Animal spatial behaviour is often presumed to reflect responses to visual cues. However, inference of behaviour in relation to the environment is challenged by the lack of objective methods to identify the information that effectively is available to an animal from a given location. In general, animals are assumed to have unconstrained information on the environment within a detection circle of a certain radius (the perceptual range; PR). However, visual cues are only available up to the first physical obstruction within an animal's PR, making information availability a function of an animal's location within the physical environment (the effective visual perceptual range; EVPR). By using LiDAR data and viewshed analysis, we modelled forest birds' EVPRs at each step along a movement path. We found that the EVPR was on average 0.063% that of an unconstrained PR and, by applying a step-selection analysis, that individuals are 1.55 times more likely to move to a tree within their EVPR than to an equivalent tree outside it. This demonstrates that behavioural choices can be substantially impacted by the characteristics of an individual's EVPR and highlights that inferences made from movement data may be improved by accounting for the EVPR.


Subject(s)
Birds , Ecosystem , Animals , Forests , Movement , Trees
9.
Evolution ; 74(10): 2238-2249, 2020 10.
Article in English | MEDLINE | ID: mdl-32830867

ABSTRACT

Empirical studies have documented both positive and negative density-dependent dispersal, yet most theoretical models predict positive density dependence as a mechanism to avoid competition. Several hypotheses have been proposed to explain the occurrence of negative density-dependent dispersal, but few of these have been formally modeled. Here, we developed an individual-based model of the evolution of density-dependent dispersal. This model is novel in that it considers the effects of density on dispersal directly, and indirectly through effects on individual condition. Body condition is determined mechanistically, by having juveniles compete for resources in their natal patch. We found that the evolved dispersal strategy was a steep, increasing function of both density and condition. Interestingly, although populations evolved a positive density-dependent dispersal strategy, the simulated metapopulations exhibited negative density-dependent dispersal. This occurred because of the negative relationship between density and body condition: high density sites produced low-condition individuals that lacked the resources required for dispersal. Our model, therefore, generates the novel hypothesis that observed negative density-dependent dispersal can occur when high density limits the ability of organisms to disperse. We suggest that future studies consider how phenotype is linked to the environment when investigating the evolution of dispersal.


Subject(s)
Animal Distribution , Biological Evolution , Models, Biological , Animals , Body Constitution , Population Density
10.
Am Nat ; 194(4): 590-612, 2019 10.
Article in English | MEDLINE | ID: mdl-31490731

ABSTRACT

Dispersal of prey from predator-free patches frequently supplies a trophic subsidy to predators by providing more prey than are produced locally. Prey arriving from predator-free patches might also have evolved weaker defenses against predators and thus enhance trophic subsidies by providing easily captured prey. Using local models assuming a linear or accelerating trade-off between defense and population growth rate, we demonstrate that immigration of undefended prey increased predator abundances and decreased defended prey through eco-evolutionary apparent competition. In individual-based models with spatial structure, explicit genetics, and gene flow along an environmental gradient, prey became maladapted to predators at the predator's range edge, and greater gene flow enhanced this maladaptation. The predator gained a subsidy from these easily captured prey, which enhanced its abundance, facilitated its persistence in marginal habitats, extended its range extent, and enhanced range shifts during environmental changes, such as climate change. Once the predator expanded, prey adapted to it and the advantage disappeared, resulting in an elastic predator range margin driven by eco-evolutionary dynamics. Overall, the results indicate a need to consider gene flow-induced maladaptation and species interactions as mutual forces that frequently determine ecological and evolutionary dynamics and patterns in nature.


Subject(s)
Adaptation, Biological , Animal Distribution , Predatory Behavior , Animals , Biological Evolution , Climate Change , Computer Simulation , Gene Flow , Population Dynamics
11.
Biol Rev Camb Philos Soc ; 93(3): 1578-1603, 2018 08.
Article in English | MEDLINE | ID: mdl-29575449

ABSTRACT

Increasingly imperative objectives in ecology are to understand and forecast population dynamic and evolutionary responses to seasonal environmental variation and change. Such population and evolutionary dynamics result from immediate and lagged responses of all key life-history traits, and resulting demographic rates that affect population growth rate, to seasonal environmental conditions and population density. However, existing population dynamic and eco-evolutionary theory and models have not yet fully encompassed within-individual and among-individual variation, covariation, structure and heterogeneity, and ongoing evolution, in a critical life-history trait that allows individuals to respond to seasonal environmental conditions: seasonal migration. Meanwhile, empirical studies aided by new animal-tracking technologies are increasingly demonstrating substantial within-population variation in the occurrence and form of migration versus year-round residence, generating diverse forms of 'partial migration' spanning diverse species, habitats and spatial scales. Such partially migratory systems form a continuum between the extreme scenarios of full migration and full year-round residence, and are commonplace in nature. Here, we first review basic scenarios of partial migration and associated models designed to identify conditions that facilitate the maintenance of migratory polymorphism. We highlight that such models have been fundamental to the development of partial migration theory, but are spatially and demographically simplistic compared to the rich bodies of population dynamic theory and models that consider spatially structured populations with dispersal but no migration, or consider populations experiencing strong seasonality and full obligate migration. Second, to provide an overarching conceptual framework for spatio-temporal population dynamics, we define a 'partially migratory meta-population' system as a spatially structured set of locations that can be occupied by different sets of resident and migrant individuals in different seasons, and where locations that can support reproduction can also be linked by dispersal. We outline key forms of within-individual and among-individual variation and structure in migration that could arise within such systems and interact with variation in individual survival, reproduction and dispersal to create complex population dynamics and evolutionary responses across locations, seasons, years and generations. Third, we review approaches by which population dynamic and eco-evolutionary models could be developed to test hypotheses regarding the dynamics and persistence of partially migratory meta-populations given diverse forms of seasonal environmental variation and change, and to forecast system-specific dynamics. To demonstrate one such approach, we use an evolutionary individual-based model to illustrate that multiple forms of partial migration can readily co-exist in a simple spatially structured landscape. Finally, we summarise recent empirical studies that demonstrate key components of demographic structure in partial migration, and demonstrate diverse associations with reproduction and survival. We thereby identify key theoretical and empirical knowledge gaps that remain, and consider multiple complementary approaches by which these gaps can be filled in order to elucidate population dynamic and eco-evolutionary responses to spatio-temporal seasonal environmental variation and change.


Subject(s)
Animal Migration , Biological Evolution , Ecosystem , Seasons , Animals , Population Dynamics
12.
Biol Rev Camb Philos Soc ; 93(1): 574-599, 2018 02.
Article in English | MEDLINE | ID: mdl-28776950

ABSTRACT

Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal-related phenotypes or evidence for the micro-evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment-dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non-additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non-equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context-dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits.


Subject(s)
Animal Distribution/physiology , Animal Migration , Biological Evolution , Genetic Variation , Animals
13.
Ecol Evol ; 7(23): 10252-10265, 2017 12.
Article in English | MEDLINE | ID: mdl-29238552

ABSTRACT

Detailed information acquired using tracking technology has the potential to provide accurate pictures of the types of movements and behaviors performed by animals. To date, such data have not been widely exploited to provide inferred information about the foraging habitat. We collected data using multiple sensors (GPS, time depth recorders, and accelerometers) from two species of diving seabirds, razorbills (Alca torda, N = 5, from Fair Isle, UK) and common guillemots (Uria aalge, N = 2 from Fair Isle and N = 2 from Colonsay, UK). We used a clustering algorithm to identify pursuit and catching events and the time spent pursuing and catching underwater, which we then used as indicators for inferring prey encounters throughout the water column and responses to changes in prey availability of the areas visited at two levels: individual dives and groups of dives. For each individual dive (N = 661 for guillemots, 6214 for razorbills), we modeled the number of pursuit and catching events, in relation to dive depth, duration, and type of dive performed (benthic vs. pelagic). For groups of dives (N = 58 for guillemots, 156 for razorbills), we modeled the total time spent pursuing and catching in relation to time spent underwater. Razorbills performed only pelagic dives, most likely exploiting prey available at shallow depths as indicated by the vertical distribution of pursuit and catching events. In contrast, guillemots were more flexible in their behavior, switching between benthic and pelagic dives. Capture attempt rates indicated that they were exploiting deep prey aggregations. The study highlights how novel analysis of movement data can give new insights into how animals exploit food patches, offering a unique opportunity to comprehend the behavioral ecology behind different movement patterns and understand how animals might respond to changes in prey distributions.

14.
J Appl Ecol ; 53(4): 1055-1065, 2016 08.
Article in English | MEDLINE | ID: mdl-27708456

ABSTRACT

As biodiversity hotspots are often characterized by high human population densities, implementation of conservation management practices that focus only on the protection and enlargement of pristine habitats is potentially unrealistic. An alternative approach to curb species extinction risk involves improving connectivity among existing habitat patches. However, evaluation of spatially explicit management strategies is challenging, as predictive models must account for the process of dispersal, which is difficult in terms of both empirical data collection and modelling.Here, we use a novel, individual-based modelling platform that couples demographic and mechanistic dispersal models to evaluate the effectiveness of realistic management scenarios tailored to conserve forest birds in a highly fragmented biodiversity hotspot. Scenario performance is evaluated based on the spatial population dynamics of a well-studied forest bird species.The largest population increase was predicted to occur under scenarios increasing habitat area. However, the effectiveness was sensitive to spatial planning. Compared to adding one large patch to the habitat network, adding several small patches yielded mixed benefits: although overall population sizes increased, specific newly created patches acted as dispersal sinks, which compromised population persistence in some existing patches. Increasing matrix connectivity by the creation of stepping stones is likely to result in enhanced dispersal success and occupancy of smaller patches. Synthesis and applications. We show that the effectiveness of spatial management is strongly driven by patterns of individual dispersal across landscapes. For species conservation planning, we advocate the use of models that incorporate adequate realism in demography and, particularly, in dispersal behaviours.

15.
Am Nat ; 188(4): 423-33, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27622876

ABSTRACT

Sex-biased natal dispersal is widespread, and its significance remains a central question in evolutionary biology. However, theory so far fails to predict some of the most common patterns found in nature. To address this, we present novel results from an individual-based model investigating the joint roles of inbreeding load, demographic stochasticity, environmental stochasticity, and dispersal costs for the evolution of sex-biased dispersal. Most strikingly, we found that male-biased natal dispersal evolved in polygynous systems as a result of the interplay between inbreeding avoidance and stochasticity, whereas previous theory, in contrast to empirical observations, predicted male philopatry and female-biased natal dispersal under inbreeding load alone. Furthermore, the direction of the bias varied according to the nature of stochasticity. Our results therefore provide a unification of previous theory, yielding a much better qualitative match with empirical observations of male-biased dispersal in mate defense mating systems.


Subject(s)
Inbreeding , Sexual Behavior, Animal , Animal Distribution , Animals , Demography , Environment , Female , Male , Reproduction
16.
Am Nat ; 187(1): 143-50, 2016 Jan.
Article in English | MEDLINE | ID: mdl-27277411

ABSTRACT

Previous results showing that lack of information on local population density leads to higher emigration probabilities in unpredictable environments but to lower emigration probabilities in constant or highly predictable scenarios have recently been challenged by Poethke et al. By reimplementing both our model and that of Poethke and colleagues, we demonstrate that our original results indeed hold to the presented critiques and do not contradict previous findings. The comment by Poethke and colleagues does, however, present potentially intriguing results suggesting that negative density-dependent dispersal evolves under white noise for some model formulations. Here, through intermodel comparison, we seek to better understand the source of the differences in results obtained in our study and theirs. We conclude that the apparent negative density dependence reported by Poethke et al. is effectively density independence and that the shape of the reaction norm they obtain is a model artefact. Further, this response provides an opportunity to elaborate on some important issues in evolutionary and ecological modeling regarding (i) the importance of carefully considering different models' assumptions in comparisons among models, (ii) the need to consider the role of stochasticity and uncertainty when presenting and interpreting results from stochastic individual-based models, (iii) the adequate choice of the underlying ecological model that creates the selective pressures determining the evolution of behavioral reaction norms, and (iv) the appropriate choice of mutation models.


Subject(s)
Animal Distribution , Biological Evolution , Ecological and Environmental Phenomena , Population Density , Animals , Computer Simulation , Models, Theoretical
17.
Glob Chang Biol ; 22(7): 2415-24, 2016 07.
Article in English | MEDLINE | ID: mdl-27073017

ABSTRACT

Estimating population spread rates across multiple species is vital for projecting biodiversity responses to climate change. A major challenge is to parameterise spread models for many species. We introduce an approach that addresses this challenge, coupling a trait-based analysis with spatial population modelling to project spread rates for 15 000 virtual mammals with life histories that reflect those seen in the real world. Covariances among life-history traits are estimated from an extensive terrestrial mammal data set using Bayesian inference. We elucidate the relative roles of different life-history traits in driving modelled spread rates, demonstrating that any one alone will be a poor predictor. We also estimate that around 30% of mammal species have potential spread rates slower than the global mean velocity of climate change. This novel trait-space-demographic modelling approach has broad applicability for tackling many key ecological questions for which we have the models but are hindered by data availability.


Subject(s)
Biodiversity , Climate Change , Mammals , Animals , Bayes Theorem , Demography , Models, Theoretical
18.
Ecol Evol ; 6(3): 727-41, 2016 02.
Article in English | MEDLINE | ID: mdl-26865961

ABSTRACT

The recent increase in data accuracy from high resolution accelerometers offers substantial potential for improved understanding and prediction of animal movements. However, current approaches used for analysing these multivariable datasets typically require existing knowledge of the behaviors of the animals to inform the behavioral classification process. These methods are thus not well-suited for the many cases where limited knowledge of the different behaviors performed exist. Here, we introduce the use of an unsupervised learning algorithm. To illustrate the method's capability we analyse data collected using a combination of GPS and Accelerometers on two seabird species: razorbills (Alca torda) and common guillemots (Uria aalge). We applied the unsupervised learning algorithm Expectation Maximization to characterize latent behavioral states both above and below water at both individual and group level. The application of this flexible approach yielded significant new insights into the foraging strategies of the two study species, both above and below the surface of the water. In addition to general behavioral modes such as flying, floating, as well as descending and ascending phases within the water column, this approach allowed an exploration of previously unstudied and important behaviors such as searching and prey chasing/capture events. We propose that this unsupervised learning approach provides an ideal tool for the systematic analysis of such complex multivariable movement data that are increasingly being obtained with accelerometer tags across species. In particular, we recommend its application in cases where we have limited current knowledge of the behaviors performed and existing supervised learning approaches may have limited utility.

19.
Biol Lett ; 11(1): 20140871, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25568153

ABSTRACT

The dynamics of range formation are important for understanding and predicting species distributions. Here, we focus on a process that has thus far been overlooked in the context of range formation; the accumulation of mutation load. We find that mutation accumulation severely reduces the extent of a range across an environmental gradient, especially when dispersal is limited, growth rate is low and mutations are of intermediate deleterious effect. Our results illustrate the important role deleterious mutations can play in range formation. We highlight this as a necessary focus for further work, noting particularly the potentially conflicting effects dispersal may have in reducing mutation load and simultaneously increasing migration load in marginal populations.


Subject(s)
Animal Distribution , Animal Migration , Genetics, Population , Mutation , Animals , Environment , Models, Theoretical
20.
PLoS One ; 9(11): e112492, 2014.
Article in English | MEDLINE | ID: mdl-25405860

ABSTRACT

Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations. We introduce an individual-based model for understanding and predicting spatial hen harrier (Circus cyaneus) population dynamics in Great Britain. The model uses a landscape with habitat, prey and game management indices. The hen harrier population was initialised according to empirical census estimates for 1988/89 and simulated until 2030, and predictions for 1998, 2004 and 2010 were compared to empirical census estimates for respective years. The model produced a good qualitative match to overall trends between 1989 and 2010. Parameter explorations revealed relatively high elasticity in particular to demographic parameters such as juvenile male mortality. This highlights the need for robust parameter estimates from empirical research. There are clearly challenges for replication of real-world population trends, but this model provides a useful tool for increasing understanding of drivers of hen harrier dynamics and focusing research efforts in order to inform conflict management decisions.


Subject(s)
Ecosystem , Hawks/physiology , Models, Biological , Animal Distribution , Animals , Humans , Phylogeography , Population
SELECTION OF CITATIONS
SEARCH DETAIL
...