Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Ethnopharmacol ; 212: 166-174, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29042288

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Native Americans used plants from the genus Echinacea to treat a variety of different inflammatory conditions including swollen gums, sore throats, skin inflammation, and gastrointestinal disorders. Today, various Echinacea spp. preparations are used primarily to treat upper respiratory infections. AIM OF THE STUDY: The goal of this study was to evaluate the effects of an ethanolic E. purpurea (L) Moench root extract and the alkylamide dodeca-2E,4E-dienoic acid isobutylamide (A15) on mast cells, which are important mediators of allergic and inflammatory responses. Inhibition of mast cell activation may help explain the traditional use of Echinacea. MATERIALS AND METHODS: A15 was evaluated for its effects on degranulation, calcium influx, cytokine and lipid mediator production using bone marrow derived mast cells (BMMCs) and the transformed rat basophilic leukemia mast cell line RBL-2H3. Methods included enzymatic assays, fluorimetry, ELISAs, and microscopy. A root extract of E. purpurea, and low and high alkylamide-containing fractions prepared from this extract, were also tested for effects on mast cell function. Finally, we tested A15 for effects on calcium responses in RAW 264.7 macrophage and Jurkat T cell lines. RESULTS: A15 inhibited ß-hexosaminidase release from BMMCs and RBL-2H3 cells after treatment with the calcium ionophore A23187 by 83.5% and 48.4% at 100µM, respectively. Inhibition also occurred following stimulation with IgE anti-DNP/DNP-HSA. In addition, A15 inhibited 47% of histamine release from A23187-treated RBL-2H3 cells. A15 prevented the rapid rise in intracellular calcium following FcεRI crosslinking and A23187 treatment suggesting it acts on the signals controlling granule release. An E. purpurea root extract and a fraction with high alkylamide content derived from this extract also displayed these activities while fractions with little to no detectable amounts of alkylamide did not. A15 mediated inhibition of calcium influx was not limited to mast cells as A23187-stimulated calcium influx was blocked in both RAW 264.7 and Jurkat cell lines with 60.2% and 43.6% inhibition at 1min post-stimulation, respectively. A15 also inhibited the release of TNF-α, and PGE2 to a lesser degree, following A23187 stimulation indicating its broad activity on mast cell mediator production. CONCLUSIONS: These findings suggest that Echinacea extracts and alkylamides may be useful for treating allergic and inflammatory responses mediated by mast cells. More broadly, since calcium is a critical second messenger, the inhibitory effects of alkylamides on calcium uptake would be predicted to dampen a variety of pathological responses, suggesting new uses for this plant and its constituents.


Subject(s)
Amides/pharmacology , Calcium/metabolism , Echinacea/chemistry , Mast Cells/drug effects , Plant Extracts/pharmacology , Amides/chemistry , Animals , Cell Line , Dinoprostone/genetics , Dinoprostone/metabolism , Female , Gene Expression Regulation/drug effects , Humans , Male , Mice , Plant Extracts/chemistry , Rats , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
2.
Dev Neurobiol ; 77(2): 190-201, 2017 02.
Article in English | MEDLINE | ID: mdl-27513442

ABSTRACT

It is well established that the nonapeptide oxytocin (Oxt) is important for the neural modulation of behaviors in many mammalian species. Since its discovery in 1906 and synthesis in the early 1950s, elegant pharmacological work has helped identify specific neural substrates on which Oxt exerts its effects. More recently, mice with targeted genetic disruptions of the Oxt system-i.e., both the peptide and its receptor (the Oxtr)-have further defined Oxt's actions and laid some important scientific groundwork for studies in other species. In this article, we highlight the scientific contributions that various mouse knockouts of the Oxt system have made to our understanding of Oxt's modulation of behavior. We specifically focus on how the use of these mice has shed light on our understanding of social recognition memory, maternal behavior, aggression, and several nonsocial behaviors. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 190-201, 2017.


Subject(s)
Aggression/physiology , Behavior, Animal/physiology , Maternal Behavior/physiology , Oxytocin/physiology , Social Behavior , Animals , Mice , Mice, Knockout
3.
Protein Sci ; 26(2): 292-305, 2017 02.
Article in English | MEDLINE | ID: mdl-27859834

ABSTRACT

The toxicity of mercury is often attributed to its tight binding to cysteine thiolate anions in vital enzymes. To test our hypothesis that Hg(II) binding to histidine could be a significant factor in mercury's toxic effects, we studied the enzyme chymotrypsin, which lacks free cysteine thiols; we found that chymotrypsin is not only inhibited, but also denatured by Hg(II). We followed the aggregation of denatured enzyme by the increase in visible absorbance due to light scattering. Hg(II)-induced chymotrypsin precipitation increased dramatically above pH 6.5, and free imidazole inhibited this precipitation, implicating histidine-Hg(II) binding in the process of chymotrypsin denaturation/aggregation. Diethylpyrocarbonate (DEPC) blocked chymotrypsin's two histidines (his40 and his57 ) quickly and completely, with an IC50 of 35 ± 6 µM. DEPC at 350 µM reduced the hydrolytic activity of chymotrypsin by 90%, suggesting that low concentrations of DEPC react with his57 at the active site catalytic triad; furthermore, DEPC below 400 µM enhanced the Hg(II)-induced precipitation of chymotrypsin. We conclude that his57 reacts readily with DEPC, causing enzyme inhibition and enhancement of Hg(II)-induced aggregation. Above 500 µM, DEPC inhibited Hg(II)-induced precipitation, and [DEPC] >2.5 mM completely protected chymotrypsin against precipitation. This suggests that his40 reacts less readily with DEPC, and that chymotrypsin denaturation is caused by Hg(II) binding specifically to the his40 residue. Finally, we show that Hg(II)-histidine binding may trigger hemoglobin aggregation as well. Because of results with these two enzymes, we suggest that metal-histidine binding may be key to understanding all heavy metal-induced protein aggregation.


Subject(s)
Chymotrypsin/chemistry , Histidine/chemistry , Mercury/chemistry , Protein Aggregates , Protein Denaturation , Serine Proteinase Inhibitors/chemistry
4.
J Comput Chem ; 37(18): 1681-96, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27117497

ABSTRACT

The structural properties and reactivity of iron-sulfur proteins are greatly affected by interactions between the prosthetic groups and the surrounding amino acid residues. Thus, quantum chemical investigations of the structure and properties of protein-bound iron-sulfur clusters can be severely limited by truncation of computational models. The aim of this study was to identify, a priori, significant interactions that must be included in a quantum chemical model. Using the [2Fe-2S] accessory cluster of the FeFe-hydrogenase as a demonstrative example with rich electronic structural features, the electrostatic and covalent effects of the surrounding side chains, charged groups, and backbone moieties were systematically mapped through density functional theoretical calculations. Electron affinities, spin density differences, and delocalization indexes from the quantum theory of atoms in molecules were used to evaluate the importance of each interaction. Case studies for hydrogen bonding and charged side-chain interactions were used to develop selection rules regarding the significance of a given protein environmental effect. A set of general rules is proposed for constructing quantum chemical models for iron-sulfur active sites that capture all significant interactions from the protein environment. This methodology was applied to our previously used models in galactose oxidase and the 6Fe-cluster of FeFe-hydrogenase. © 2016 Wiley Periodicals, Inc.


Subject(s)
Computer Simulation , Environment , Iron-Sulfur Proteins/chemistry , Iron/chemistry , Models, Chemical , Sulfur/chemistry , Hydrogen Bonding , Models, Molecular , Quantum Theory
5.
Chemistry ; 22(26): 8796-800, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-26992061

ABSTRACT

The reaction mechanism for difluoromethylation of lithium enolates with fluoroform was analyzed computationally (DFT calculations with the artificial force induced reaction (AFIR) method and solvation model based on density (SMD) solvation model (THF)), showing an SN 2-type carbon-carbon bond formation; the "bimetallic" lithium enolate and lithium trifluoromethyl carbenoid exert the C-F bond "dual" activation, in contrast to the monometallic butterfly-shaped carbenoid in the Simmons-Smith reaction. Lithium enolates, generated by the reaction of 2 equiv. of lithium hexamethyldisilazide (rather than 1 or 3 equiv.) with the cheap difluoromethylating species fluoroform, are the most useful alkali metal intermediates for the synthesis of pharmaceutically important α-difluoromethylated carbonyl products.

6.
Biol Bull ; 230(1): 35-50, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26896176

ABSTRACT

Water temperature influences the behavior and distribution patterns of both larval and adult American lobster Homarus americanus. However, very little is known about the responses of juvenile lobsters. The juvenile life stage is a critical period; high levels of mortality, combined with specific behavioral responses, can disconnect larval settlement from patterns of abundance of adults. We assessed behavioral thermoregulation in juvenile lobsters, and determined how thermal preferences can be altered by the presence of shelter and food. Juvenile lobsters avoided temperatures higher than 20 °C and lower than 8 °C, and had a mean temperature preference of 16.2 ± 1 °C. This preference was unaffected by prior acclimation, origin (laboratory-raised or wild), or size. When the animals were subjected to a temperature change (5-20 °C), activity rates peaked at 15 °C, and remained stable thereafter. Activity rates did not change when a shelter was added. The addition of food resulted in an increase in activity associated with food handling. When juvenile lobsters were offered a choice between temperature, shelter, and food, they always chose the environment with a shelter, even when it was in a thermally unfavorable temperature. Juveniles also spent more time in a thermally unfavorable environment when food was present; however, acquisition of a shelter was prioritized over food. Although juveniles had a similar thermal preference to adults, they are more vulnerable to predation; the innate shelter-seeking behavior of juveniles overrode their thermal preference. While temperature is an important environmental factor affecting the physiology, distribution, and growth of aquatic ectotherms, our findings suggest that trade-off behaviors occur in order to maintain optimal fitness and survival of the individual.


Subject(s)
Behavior, Animal/radiation effects , Body Temperature Regulation , Feeding Behavior/radiation effects , Nephropidae/physiology , Animals , Locomotion/radiation effects , Temperature
7.
Nat Prod Commun ; 11(8): 1143-1146, 2016 Jan.
Article in English | MEDLINE | ID: mdl-28479944

ABSTRACT

Botanical extracts of Echinacea purpurea have been widely used for the treatment of upper respiratory infections. We sought to chemically examine fungal endophytes inhabiting E. purpurea, and to identify compounds produced by these endophytes with in vitro cytokine-suppressive activity. Twelve isolates from surface sterilized seeds of E. purpurea were subjected to fractionation and major components were isolated. Sixteen secondary metabolites belonging to different structural classes were identified from these isolates based on NMR and mass spectrometry data. The compounds were tested for their influence on cytokine secretion by murine macrophage-type cells. Alternariol (1), O-prenylporriolide (4), porritoxin (10) ß-zearalenol (13), and (S)-zearalenone (14) inhibited production of TNF-α from RAW 264.7 macrophages stimulated with LPS in the absence of any significant cytotoxicity. This is the first report of a cytokine-suppressive effect for 4. The results of this study are particularly interesting given that they show the presence of compounds with cytokine-suppressive activity in endophytes from a botanical used to treat inflammation. Future investigations into the role of fungal endophytes in the biological activity of E. purpurea dietary supplements may be warranted.


Subject(s)
Endophytes , Animals , Echinacea , Macrophages , Mice , Plant Extracts , Tumor Necrosis Factor-alpha
8.
Bioorg Med Chem Lett ; 25(16): 3091-4, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26105195

ABSTRACT

Alkylamides are lipophilic constituents of Echinacea and possess numerous biological activities. Although significant effort has been focused on the study of crude Echinacea extracts, very little is known regarding the activities of the individual constituents that make up these herbal treatments. Herein we explore the SAR of simple alkylamides found in Echinacea extracts with respect to their ability to decrease the production of the pro-inflammatory mediator TNF-α. Our results have revealed the key structural requirements for activity and provide lead compounds for further investigation of these poorly understood molecules.


Subject(s)
Amides/chemistry , Echinacea/chemistry , Amides/chemical synthesis , Amides/pharmacology , Animals , Cell Line , Echinacea/metabolism , Fatty Acids/chemistry , Lipopolysaccharides/toxicity , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Plant Extracts/chemistry , Tumor Necrosis Factor-alpha/metabolism
9.
Article in English | MEDLINE | ID: mdl-26042087

ABSTRACT

Oxytocin (Oxt) is a neurohormone known for its physiological roles associated with lactation and parturition in mammals. Oxt can also profoundly influence mammalian social behaviors such as affiliative, parental, and aggressive behaviors. While the acute effects of Oxt signaling on adult behavior have been heavily researched in many species, including humans, the developmental effects of Oxt on the brain and behavior are just beginning to be explored. There is evidence that Oxt in early postnatal and peripubertal development, and perhaps during prenatal life, affects adult behavior by altering neural structure and function. However, the specific mechanisms by which this occurs remain unknown. Thus, this review will detail what is known about how developmental Oxt impacts behavior as well as explore the specific neurochemicals and neural substrates that are important to these behaviors.

10.
PLoS One ; 10(5): e0124276, 2015.
Article in English | MEDLINE | ID: mdl-25933416

ABSTRACT

Echinacea preparations, which are used for the prevention and treatment of upper respiratory infections, account for 10% of the dietary supplement market in the U.S., with sales totaling more than $100 million annually. In an attempt to shed light on Echinacea's mechanism of action, we evaluated the effects of a 75% ethanolic root extract of Echinacea purpurea, prepared in accord with industry methods, on cytokine and chemokine production from RAW 264.7 macrophage-like cells. We found that the extract displayed dual activities; the extract could itself stimulate production of the cytokine TNF-α, and also suppress production of TNF-α in response to stimulation with exogenous LPS. Liquid:liquid partitioning followed by normal-phase flash chromatography resulted in separation of the stimulatory and inhibitory activities into different fractions, confirming the complex nature of this extract. We also studied the role of alkylamides in the suppressive activity of this E. purpurea extract. Our fractionation method concentrated the alkylamides into a single fraction, which suppressed production of TNF-α, CCL3, and CCL5; however fractions that did not contain detectable alkylamides also displayed similar suppressive effects. Alkylamides, therefore, likely contribute to the suppressive activity of the extract but are not solely responsible for that activity. From the fractions without detectable alkylamides, we purified xanthienopyran, a compound not previously known to be a constituent of the Echinacea genus. Xanthienopyran suppressed production of TNF-α suggesting that it may contribute to the suppressive activity of the crude ethanolic extract. Finally, we show that ethanolic extracts prepared from E. purpurea plants grown under sterile conditions and from sterilized seeds, do not contain LPS and do not stimulate macrophage production of TNF-α, supporting the hypothesis that the macrophage-stimulating activity in E. purpurea extracts can originate from endophytic bacteria. Together, our findings indicate that ethanolic E. purpurea extracts contain multiple constituents that differentially regulate cytokine production by macrophages.


Subject(s)
Bacteria/chemistry , Cytokines/metabolism , Echinacea/chemistry , Endophytes/chemistry , Ethanol/chemistry , Plant Extracts/pharmacology , Amides/pharmacology , Animals , Cell Death/drug effects , Chemical Fractionation , Chemokines/metabolism , Echinacea/growth & development , Mice , Pyrans/chemistry , Pyrans/pharmacology , RAW 264.7 Cells , Seeds/drug effects , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/biosynthesis , Xanthines/chemistry , Xanthines/pharmacology
12.
J Chem Phys ; 140(5): 054303, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24511936

ABSTRACT

The applicability of ab initio multireference wavefunction-based methods to the study of magnetic complexes has been restricted by the quickly rising active-space requirements of oligonuclear systems and dinuclear complexes with S > 1 spin centers. Ab initio density matrix renormalization group (DMRG) methods built upon an efficient parameterization of the correlation network enable the use of much larger active spaces, and therefore may offer a way forward. Here, we apply DMRG-CASSCF to the dinuclear complexes [Fe2OCl6](2-) and [Cr2O(NH3)10](4+). After developing the methodology through systematic basis set and DMRG M testing, we explore the effects of extended active spaces that are beyond the limit of conventional methods. We find that DMRG-CASSCF with active spaces including the metal d orbitals, occupied bridging-ligand orbitals, and their virtual double shells already capture a major portion of the dynamic correlation effects, accurately reproducing the experimental magnetic coupling constant (J) of [Fe2OCl6](2-) with (16e,26o), and considerably improving the smaller active space results for [Cr2O(NH3)10](4+) with (12e,32o). For comparison, we perform conventional MRCI+Q calculations and find the J values to be consistent with those from DMRG-CASSCF. In contrast to previous studies, the higher spin states of the two systems show similar deviations from the Heisenberg spectrum, regardless of the computational method.

13.
J Comput Chem ; 35(7): 540-52, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24458434

ABSTRACT

The covalent character of iron-sulfur bonds is a fundamental electronic structural feature for understanding the electronic and magnetic properties and the reactivity of biological and biomimetic iron-sulfur clusters. Conceptually, bond covalency obtained from X-ray absorption spectroscopy (XAS) can be directly related to orbital compositions from electronic structure calculations, providing a standard for evaluation of density functional theoretical methods. Typically, a combination of functional and basis set that optimally reproduces experimental bond covalency is chosen, but its dependence on the population analysis method is often neglected, despite its important role in deriving theoretical bond covalency. In this study of iron tetrathiolates, and classical [2Fe-2S] and [4Fe-4S] clusters with only thiolate ligands, we find that orbital compositions can vary significantly depending on whether they are derived from frontier orbitals, spin densities, or electron sharing indexes from "Átoms in Molecules" (ÁIM) theory. The benefits and limitations of Mulliken, Minimum Basis Set Mulliken, Natural, Coefficients-Squared, Hirshfeld, and AIM population analyses are described using ab initio wave function-based (QCISD) and experimental (S K-edge XAS) bond covalency. We find that the AIM theory coupled with a triple-ζ basis set and the hybrid functional B(5%HF)P86 gives the most reasonable electronic structure for the studied Fe-S clusters.


Subject(s)
Iron-Sulfur Proteins/chemistry , Iron/chemistry , Sulfhydryl Compounds/chemistry , Sulfur/chemistry , Electrons , Ligands , Models, Molecular , X-Ray Absorption Spectroscopy
14.
J Trauma Acute Care Surg ; 76(1): 79-82; discussion 82-3, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24368360

ABSTRACT

BACKGROUND: In 2012, a protocol for routine outpatient laparoscopic appendectomy for uncomplicated appendicitis was published reflecting high success, low morbidity, and significant cost savings. Despite this, national data reflect that the majority of laparoscopic appendectomies are performed with overnight admission. This study updates our experience with outpatient appendectomy since our initial report, confirming the efficacy of this approach. METHODS: In July 2010, a prospective protocol for outpatient laparoscopic appendectomy was adopted at our institution. Patients were dismissed from the postanesthesia recovery room or day surgery if they met predefined criteria for dismissal. Patients admitted to a hospital room as either full admission or observation status were considered failures of outpatient management. An institutional review board-approved retrospective review of patients undergoing laparoscopic appendectomy for uncomplicated appendicitis from July 2010 through December 2012 was performed to analyze success of outpatient management, postoperative morbidity and mortality, as well as readmission rates. RESULTS: Three hundred forty-five patients underwent laparoscopic appendectomy for uncomplicated appendicitis during this time frame. There were 166 men and 179 women, with a mean age of 35 years. Three hundred five patients were managed as outpatients, with a success rate of 88%. Forty patients (12%) were admitted for preexisting comorbidities (15 patients), postoperative morbidity (6 patients), or lack of transportation or home support (19 patients). Twenty-three patients (6.6%) experienced postoperative morbidity. There were no mortalities. Four patients (1%) were readmitted for transient fever, nausea/vomiting, partial small bowel obstruction, and deep venous thrombosis. CONCLUSION: Outpatient laparoscopic appendectomy can be performed with a high rate of success, a low morbidity, and a low readmission rate. This study reaffirms our original pilot study and should serve as the basis for a change in the standard of care for appendicitis. LEVEL OF EVIDENCE: Therapeutic study, level V.


Subject(s)
Appendectomy/methods , Appendicitis/surgery , Laparoscopy/methods , Adolescent , Adult , Aged , Aged, 80 and over , Appendectomy/standards , Clinical Protocols/standards , Female , Humans , Laparoscopy/standards , Male , Middle Aged , Retrospective Studies , Treatment Outcome , Young Adult
15.
Inorg Chem ; 52(15): 8551-63, 2013 Aug 05.
Article in English | MEDLINE | ID: mdl-23865546

ABSTRACT

Ferritins are cage-like proteins composed of 24 subunits that take up iron(II) and store it as an iron(III) oxide mineral core. A critical step is the ferroxidase reaction, in which oxygen reacts with a di-iron(II) site, proceeding through a peroxo intermediate, to form µ-oxo/hydroxo-bridged di-iron(III) products. The recent crystal structures of copper(II)- and iron(III)-bound frog M ferritin at 2.8 Å resolution [Bertini; et al. J. Am. Chem. Soc. 2012, 134, 6169-6176] provided an opportunity to theoretically investigate the detailed structures of the reactant state and products. In this study, the quantum mechanical/molecular mechanical ONIOM method is used to structurally optimize a series of single-subunit models with various hydration, protonation, and coordination states of the ferroxidase site. Calculated exchange coupling constants (J), Mössbauer parameters, and time-dependent density functional theoretical (TD-DFT) circular dichroism spectra with electronic embedding are compared with the available experimental data. The di-iron(II) model with the most experimentally consistent structural and spectroscopic parameters has 5-coordinate iron centers with Glu23, Glu58, His61, and two waters completing one coordination sphere, and His54, Glu58, Glu103, and Asp140 completing the other. In contrast to a previously proposed structure, Gln137 is not directly coordinated, but it is involved in hydrogen bonding with several iron ligands. For the di-iron(III) products, we find that a µ-oxo-bridged and two doubly bridged (µ-hydroxo and µ-oxo/hydroxo) species are likely coproduced. Although four quadrupole doublets were observed experimentally, we find that two doublets may arise from a single asymmetrically coordinated ferroxidase site. These proposed key structures will help to explore the pathway connecting the di-Fe(II) state to the peroxo intermediate and the branching mechanisms leading to the multiple products.


Subject(s)
Ceruloplasmin/chemistry , Ferritins/chemistry , Iron/chemistry , Models, Molecular , Quantum Theory , Spectrum Analysis , Animals , Anura , Ceruloplasmin/metabolism , Ferritins/metabolism , Isomerism , Ligands , Protein Conformation , Spectroscopy, Mossbauer
16.
Methods Mol Biol ; 766: 267-91, 2011.
Article in English | MEDLINE | ID: mdl-21833874

ABSTRACT

Modern density functional theory has tremendous potential with matching popularity in metalloenzymology to reveal the unseen atomic and molecular details of structural data, spectroscopic measurements, and biochemical experiments by providing insights into unobservable structures and states, while also offering theoretical justifications for observed trends and differences. An often untapped potential of this theoretical approach is to bring together diverse experimental structural and reactivity information and allow for these to be critically evaluated at the same level. This is particularly applicable for the tantalizingly complex problem of the structure and molecular mechanism of biological nitrogen fixation. In this chapter we provide a review with extensive practical details of the compilation and evaluation of experimental data for an unbiased and systematic density functional theory analysis that can lead to remarkable new insights about the structure-function relationships of the iron-sulfur clusters of nitrogenase.


Subject(s)
Nitrogenase/chemistry , Models, Theoretical , Structure-Activity Relationship
17.
Inorg Chem ; 50(11): 4811-24, 2011 Jun 06.
Article in English | MEDLINE | ID: mdl-21545160

ABSTRACT

A significant limitation in our understanding of the molecular mechanism of biological nitrogen fixation is the uncertain composition of the FeMo-cofactor (FeMo-co) of nitrogenase. In this study we present a systematic, density functional theory-based evaluation of spin-coupling schemes, iron oxidation states, ligand protonation states, and interstitial ligand composition using a wide range of experimental criteria. The employed functionals and basis sets were validated with molecular orbital information from X-ray absorption spectroscopic data of relevant iron-sulfur clusters. Independently from the employed level of theory, the electronic structure with the greatest number of antiferromagnetic interactions corresponds to the lowest energy state for a given charge and oxidation state distribution of the iron ions. The relative spin state energies of resting and oxidized FeMo-co already allowed exclusion of certain iron oxidation state distributions and interstitial ligand compositions. Geometry-optimized FeMo-co structures of several models further eliminated additional states and compositions, while reduction potentials indicated a strong preference for the most likely charge state of FeMo-co. Mössbauer and ENDOR parameter calculations were found to be remarkably dependent on the employed training set, density functional, and basis set. Overall, we found that a more oxidized [Mo(IV)-2Fe(II)-5Fe(III)-9S(2-)-C(4-)] composition with a hydroxyl-protonated homocitrate ligand satisfies all of the available experimental criteria and is thus favored over the currently preferred composition of [Mo(IV)-4Fe(II)-3Fe(III)-9S(2-)-N(3-)] from the literature.


Subject(s)
Nitrogenase/chemistry , Crystallography, X-Ray , Models, Molecular , Nitrogenase/metabolism , Quantum Theory , Thermodynamics
18.
J Biol Inorg Chem ; 14(6): 891-8, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19350289

ABSTRACT

Several Ru(III) compounds are propitious anticancer agents although the precise mechanisms of action remain unknown. With this paper we start to establish an experimental library of X-ray absorption spectroscopy (XAS) data for ten Ru compounds wherein the ligands [Cl(-), dimethyl sulfoxide, imidazole, and indazole] were varied systematically to provide electronic structural information for future use in correlating spectroscopic signatures with chemical properties. Despite the considerable difference in the coordination environments of the complexes studied, the overall differences in spectral features and electronic structures calculated using density functional theory are unexpectedly small. However, the differences in the electronic structure of the Ru(III) prodrugs KP1019 ([IndH][trans-RuCl(4)(Ind)(2)], Ind is indazole) and ICR ([ImH][trans-RuCl(4)(Im)(2)], Im is imidazole) observed in the XAS data show correlation with known chemical and biological activities in addition to the donor abilities of imidazole compared with indazole and reduction potentials of the complexes. These semiquantitative results lay the groundwork for future biochemical studies into the structure-function relationships of Ru-based anticancer drugs.


Subject(s)
Antineoplastic Agents/chemistry , Electrons , Organometallic Compounds/chemistry , Ruthenium/chemistry , Absorption , Ligands , Quantum Theory , Spectrum Analysis , X-Rays
19.
J Am Chem Soc ; 130(13): 4533-40, 2008 Apr 02.
Article in English | MEDLINE | ID: mdl-18324814

ABSTRACT

An X-ray crystallographic refinement of the H-cluster of [FeFe]-hydrogenase from Clostridium pasteurianum has been carried out to close-to atomic resolution and is the highest resolution [FeFe]-hydrogenase presented to date. The 1.39 A, anisotropically refined [FeFe]-hydrogenase structure provides a basis for examining the outstanding issue of the composition of the unique nonprotein dithiolate ligand of the H-cluster. In addition to influencing the electronic structure of the H-cluster, the composition of the ligand has mechanistic implications due to the potential of the bridge-head gamma-group participating in proton transfer during catalysis. In this work, sequential density functional theory optimizations of the dithiolate ligand embedded in a 3.5-3.9 A protein environment provide an unbiased approach to examining the most likely composition of the ligand. Structural, conformational, and energetic considerations indicate a preference for dithiomethylether as an H-cluster ligand and strongly disfavor the dithiomethylammonium as a catalytic base for hydrogen production.


Subject(s)
Hydrogenase/chemistry , Methyl Ethers/chemistry , Binding Sites , Clostridium/enzymology , Computer Simulation , Crystallography, X-Ray , Iron/chemistry , Ligands , Models, Chemical , Models, Molecular
20.
J Exp Med ; 200(6): 713-24, 2004 Sep 20.
Article in English | MEDLINE | ID: mdl-15381727

ABSTRACT

Leukocyte trafficking to sites of inflammation follows a defined temporal pattern, and evidence suggests that initial neutrophil transendothelial migration modifies endothelial cell phenotype. We tested the hypothesis that preconditioning of human umbilical vein endothelial cells (HUVEC) by neutrophils would also modify the subsequent transendothelial migration of T lymphocytes across cytokine-stimulated HUVEC in an in vitro flow assay. Using fluorescence microscopy, preconditioning of HUVEC by neutrophils was observed to significantly reduce the extent of subsequent stromal cell-derived factor-1alpha (SDF-1alpha [CXCL12])-mediated T lymphocyte transendothelial migration, without reducing accumulation. In contrast, recruitment of a second wave of neutrophils was unaltered. Conditioned medium harvested after transendothelial migration of neutrophils or supernatants from stimulated neutrophils mediated a similar blocking effect, which was negated using a specific neutrophil elastase inhibitor. Furthermore, T lymphocyte transendothelial migration was inhibited by treatment of HUVEC with purified neutrophil elastase, which selectively cleaved the amino terminus of HUVEC-bound SDF-1alpha, which is required for its chemotactic activity. The reduction in T lymphocyte transendothelial migration was not observed using a different chemokine, ELC (CCL19), and was not reversed by replenishment of SDF-1alpha, indicating endothelial retention of the inactivated chemokine. In summary, transmigrating neutrophils secrete localized elastase that is protected from plasma inhibitors, and thereby modulate trafficking of other leukocyte subsets by altering the endothelial-associated chemotactic activities.


Subject(s)
Chemokines, CXC/physiology , Endothelial Cells/cytology , Leukocyte Elastase/physiology , Neutrophils/physiology , T-Lymphocytes/physiology , Cell Communication , Cell Movement , Cells, Cultured , Chemokine CXCL12 , Complement C5a/pharmacology , Endothelial Cells/metabolism , Humans , Interleukin-1/pharmacology , Interleukin-8/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...