Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 1(3): 693-707, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-34996200

ABSTRACT

Nanocomposites and hybrid materials of Ag-1,3,5-benzenetricarboxylic acid metal-organic frameworks (MOFs) with S- and N-carbon quantum dots (CQDs) were synthesized and evaluated for their antibacterial activity against representative Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacterial strains using the qualitative disk-diffusion approach and the quantitative minimum inhibitory concentration test. The composites and hybrids were found to be nontoxic to living cells. The composite formation fostered a synergistic effect that enhanced their antibacterial activity compared with those of their pristine components. Charge transfer from AgMOF to CQDs facilitated the electrostatic interactions of the composites and hybrids with the bacterial cell membranes. Enhanced bactericidal activity was linked to morphological features (a nanorod-like morphology) and specific surface chemistry. The latter affected the release of silver. Silver on the surface of the MOFs rather than silver in the bulk was found to be important. The destruction of the MOF component in the extracellular environment led to the release of silver ions, which have a high affinity to S compounds of the cell physiology. The formation of metallic silver (Ag°) and silver sulfides (Ag2S) was suggested as essential for the ability of the composites and hybrids to inhibit bacterial growth. To the best of our knowledge, this is the first study that introduces the bactericidal effect of AgMOF-CQDs composites and hybrids.

2.
Small ; 13(1)2017 Jan.
Article in English | MEDLINE | ID: mdl-27709768

ABSTRACT

A unique composite of the copper-based metal-organic framework (Cu-benzene tricarboxylic acid (BTC)) with oxidized graphitic carbon nitride nanospheres is synthesized. For comparison, a hybrid material consisting of g-C3 N4 and Cu-BTC is also obtained. Their surface features are analyzed using Fourier transform infrared spectroscopy, X-ray diffraction, sorption of nitrogen, thermal analysis, scanning electron microscopy, photoluminescence, and diffuse reflectance UV-Vis spectroscopy. The results suggest that the formed nanospheres of oxidized g-C3 N4 act as linkers between the copper sites, playing a crucial role in the composite building process. Their incorporation to the Cu-BTC framework causes the development of new mesoporosity. Remarkable alterations in the optical properties, as a result of the coordination of oxygen containing functional groups of the oxidized graphitic carbon nitride to the copper atoms of the framework, suggest an increase in photoreactivity. On the other hand, for the hybrid material consisting of Cu-BTC and g-C3 N4 , the unaltered pore volume and optical properties support the formation of a physical mixture rather than of a composite. The tests on reactive adsorption and detoxification of G-series organophosphate nerve agent surrogate show the enhanced performance of the composite as catalysts and photocatalyst in visible light.

3.
Colloids Surf B Biointerfaces ; 113: 467-76, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-23973000

ABSTRACT

The present study focuses on the role of chitosan (CS) as nanofiller of graphite oxide (GO) in order to prepare composite materials with improved Hg(II) adsorption properties. The removal of Hg(II) from aqueous solutions was studied using adsorbents as graphite oxide (GO), graphite oxide nanofilled with chitosan (GO/CS) and magnetic chitosan (GO/mCS). Many possible interactions between materials and Hg(II) were observed after adsorption and explained via characterization with various techniques (SEM/EDAX, FTIR, XRD, DTG). The adsorption evaluation was done studying various parameters as the effect of pH (both in adsorption and desorption), contact time (pseudo-second order fitting), temperature (isotherms at 25, 45, 65 °C), in line with a brief thermodynamic analysis (ΔG(0), ΔH(0), ΔS(0)). The maximum adsorption capacity (fitting with Langmuir model) of GO at 25 °C was Qmax=187 mg/g, while after the CS nanofilling (formation of the composite GO/CS), Qmax was increased to 381 mg/g with a further enhancement for GO/mCS (Qmax=397 mg/g).


Subject(s)
Chitosan/chemistry , Graphite/chemistry , Mercury/chemistry , Mercury/isolation & purification , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform Infrared
4.
Langmuir ; 29(5): 1657-68, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23301870

ABSTRACT

In the current study, the functionalization of graphite oxide (GO) with magnetic chitosan (Chm) was investigated to prepare a nanocomposite material (GO-Chm) for the adsorption of a reactive dye (Reactive Black 5). The synthesis mechanism was investigated by various techniques (SEM/EDAX, FTIR spectroscopy, XRD, XPS, DTA, DTG, VSM). Characterization results indicated that a significant fraction of the amines of the chitosan (i) were inserted between the GO layers and (ii) reacted with carboxyl and epoxy groups of GO, leading to its reduction and hence the destruction of the layered structure. The concentrations of iron were found to be ∼25% for Chm and ∼12% for GO-Chm. A VSM plot presents the value of 9 emu/g for the saturation magnetization of GO-Chm. The adsorption behavior of the prepared composite was elucidated with a series of experiments. The tests of the effects of pH revealed that the adsorption mechanism dominated (between dye molecules and the GO-Chm matrix) and showed that acidic conditions were the optimum for the adsorption process (pH 3). Kinetic experiments presented the relatively "fast" adsorption phenomenon using pseudo-first-order, pseudo-second-order, and modified pseudo-second-order equations. The equilibrium data were fitted to the Langmuir, Freundlich, and Langmuir-Freundlich (L-F) models, calculating the maximum adsorption capacities at 25, 45, and 65 °C (391, 401, and 425 mg/g, respectively). Thermodynamic analysis was also performed to calculate the changes in free energy (ΔG(0)), enthalpy (ΔH(0)), and entropy (ΔS(0)).


Subject(s)
Chitosan/chemistry , Coloring Agents/chemical synthesis , Graphite/chemistry , Magnetite Nanoparticles/chemistry , Nanocomposites/chemistry , Oxides/chemistry , Adsorption , Chitosan/chemical synthesis , Coloring Agents/chemistry , Molecular Structure , Particle Size , Surface Properties
5.
Materials (Basel) ; 6(4): 1360-1376, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-28809214

ABSTRACT

In this study, the effect of preparation route of magnetic graphene oxide (mGO) on Reactive Black 5 (RB5) adsorption was investigated. The synthesis of mGO was achieved both with (i) impregnation method (mGOi nanoparticles), and (ii) co-precipitation (mGOp nanoparticles). After synthesis, the full characterization with various techniques (SEM, FTIR, XRD, DTA, DTG, VSM) was achieved revealing many possible interactions/forces of dye-composite system. Effects of initial solution pH, effect of temperature, adsorption isotherms and kinetics were investigated in order to conclude about the aforementioned effect of the preparation method on dye adsorption performance of the magnetic nanocomposites. The adsorption evaluation of the magnetic nanoparticles presented higher adsorption capacity of mGOp derivative (188 mg/g) and lower of mGOi (164 mg/g). Equilibrium experiments are also performed studying the effect of contact time (pseudo-first and -second order equations) and temperature (isotherms at 25, 45 and 65 °C fitted to Langmuir and Freundlich model). A full thermodynamic evaluation was carried out, calculating the parameters of enthalpy, free energy and entropy (ΔH°, ΔG° and ΔS°).

SELECTION OF CITATIONS
SEARCH DETAIL
...