Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 425: 127978, 2022 03 05.
Article in English | MEDLINE | ID: mdl-34896706

ABSTRACT

Fungi living in heavy metals and radionuclides contaminated environments, namely the Chernobyl Exclusion Zone need to be able to cope with these pollutants. In this study, the wood-rot fungus Schizophyllum commune was investigated for its metal tolerance mechanisms, and for its ability to transport such metals through its hyphae. Effects of temperature and pH on tolerance of Cs, Sr, Cd, and Zn were tested. At concentrations allowing for half-maximal growth, adapted strains were raised. The strontium-adapted strain, S. commune 12-43 Sr, showed transport of specifically Sr over distances on a cm-scale using split plates. The adaptation did not yield changes in cell or colony morphology. Intracellular metal localization was not changed, and gene expression profiles under metal stress growing on soil versus artificial medium showed a higher impact of a structured surface for growth on soil than with different metal concentrations. In the transcriptome, transporter genes were mostly down-regulated, while up-regulation was seen for genes involved in the secretory pathway under metal stress. A comparison of wildtype and adapted strains could confirm lower cellular stress levels leading to lack of glutathione S-transferase up-regulation in the adapted strain. Thus, we could show metal transport as well as specific mechanisms in metal stress avoidance.


Subject(s)
Metals, Heavy , Schizophyllum , Hyphae , Metals, Heavy/analysis , Schizophyllum/genetics , Soil , Wood/chemistry
2.
J Fungi (Basel) ; 7(6)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200898

ABSTRACT

Intracellular signaling is conserved in eukaryotes to allow for response to extracellular signals and to regulate development and cellular functions. In fungi, inositol phosphate signaling has been shown to be involved in growth, sexual reproduction, and metabolic adaptation. However, reports on mushroom-forming fungi are lacking so far. In Schizophyllum commune, an inositol monophosphatase has been found up-regulated during sexual development. The enzyme is crucial for inositol cycling, where it catalyzes the last step of inositol phosphate metabolism, restoring the inositol pool from the monophosphorylated inositol monophosphate. We overexpressed the gene in this model basidiomycete and verified its involvement in cell wall integrity and intracellular trafficking. Strong phenotypes in mushroom formation and cell metabolism were evidenced by proteome analyses. In addition, altered inositol signaling was shown to be involved in tolerance towards cesium and zinc, and increased metal tolerance towards cadmium, associated with induced expression of kinases and repression of phosphatases within the inositol cycle. The presence of the heavy metals Sr, Cs, Cd, and Zn lowered intracellular calcium levels. We could develop a model integrating inositol signaling in the known signal transduction pathways governed by Ras, G-protein coupled receptors, and cAMP, and elucidate their different roles in development.

3.
J Hazard Mater ; 403: 124002, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33265035

ABSTRACT

Radioactive contamination resulting from major nuclear accidents presents harsh environmental conditions. Inside the Chernobyl exclusion zone, even more than 30 years after the accident, the resulting contamination levels still does not allow land-use or human dwellings. To study the potential of basidiomycete fungi to survive the conditions, a field trial was set up 5 km south-south-west of the destroyed reactor unit. A model basidiomycete, the lignicolous fungus Schizophyllum commune, was inoculated and survival in the soil could be verified. Indeed, one year after inoculation, the fungus was still observed using DNA-dependent techniques. Growth led to spread at a high rate, with approximately 8 mm per day. This shows that also white-rot basidiomycetes can survive the harsh conditions in soil inside the Chernobyl exclusion zone. The unadapted fungal strain showed the ability to grow and thrive in the contaminated soil where both stress from radiation and heavy metals were present.


Subject(s)
Chernobyl Nuclear Accident , Metals, Heavy , Schizophyllum , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...