Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Pharmacol Ther ; 115(2): 349-360, 2024 02.
Article in English | MEDLINE | ID: mdl-38010260

ABSTRACT

This exploratory, post hoc analysis aimed to model circulating tumor DNA (ctDNA) dynamics and predict disease progression in patients with treatment-naïve locally advanced/metastatic epidermal growth factor receptor mutation (EGFRm)-positive non-small cell lung cancer, from the FLAURA trial (NCT02296125). Patients were randomized 1:1 and received osimertinib 80 mg once daily (q.d.) or comparator EGFR-TKIs (gefitinib 250 mg q.d. or erlotinib 150 mg q.d.). Plasma was collected at baseline and multiple timepoints until treatment discontinuation. Patients with Response Evaluation Criteria in Solid Tumors (RECIST) imaging data and detectable EGFR mutations (Ex19del/L858R) at baseline and ≥ 3 additional timepoints were evaluable. Joint modeling was conducted to characterize the relationship between longitudinal changes in ctDNA and probability of progression-free survival (PFS). A Bayesian joint model of ctDNA and PFS was developed solving differential equations with the ctDNA dynamics and the PFS time-to-event probability. Of 556 patients, 353 had detectable ctDNA at baseline. Evaluable patients (with available imaging and ≥ 3 additional timepoints, n = 320; ctDNA set) were divided into training (n = 259) and validation (n = 61) sets. In the validation set, the model predicted a median PFS of 17.7 months (95% confidence interval (CI): 11.9-28.3) for osimertinib (n = 23) and 9.1 months (95% CI: 6.3-14.8) for comparator (n = 38), consistent with observed RECIST PFS (16.4 months and 9.7, respectively). The model demonstrates that EGFRm ctDNA dynamics can predict the risk of disease progression in this patient population and could be used to predict RECIST-defined disease progression.


Subject(s)
Acrylamides , Aniline Compounds , Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Indoles , Lung Neoplasms , Pyrimidines , Humans , Antineoplastic Agents/therapeutic use , Bayes Theorem , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Circulating Tumor DNA/genetics , Circulating Tumor DNA/therapeutic use , Disease Progression , ErbB Receptors/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Protein Kinase Inhibitors
2.
J Pers Med ; 11(12)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34945827

ABSTRACT

Missing data is a universal problem in analysing Real-World Evidence (RWE) datasets. In RWE datasets, there is a need to understand which features best correlate with clinical outcomes. In this context, the missing status of several biomarkers may appear as gaps in the dataset that hide meaningful values for analysis. Imputation methods are general strategies that replace missing values with plausible values. Using the Flatiron NSCLC dataset, including more than 35,000 subjects, we compare the imputation performance of six such methods on missing data: predictive mean matching, expectation-maximisation, factorial analysis, random forest, generative adversarial networks and multivariate imputations with tabular networks. We also conduct extensive synthetic data experiments with structural causal models. Statistical learning from incomplete datasets should select an appropriate imputation algorithm accounting for the nature of missingness, the impact of missing data, and the distribution shift induced by the imputation algorithm. For our synthetic data experiments, tabular networks had the best overall performance. Methods using neural networks are promising for complex datasets with non-linearities. However, conventional methods such as predictive mean matching work well for the Flatiron NSCLC biomarker dataset.

SELECTION OF CITATIONS
SEARCH DETAIL
...