Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Biotechnol ; 22(1): 5, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35086540

ABSTRACT

BACKGROUND: The fall armyworm, Spodoptera frugiperda, is a significant and widespread pest of maize, sorghum, rice, and other economically important crops. Successful management of this caterpillar pest has historically relied upon application of synthetic insecticides and through cultivation of genetically engineered crops expressing insecticidal proteins (Bt crops). Fall armyworm has, however, developed resistance to both synthetic insecticides and Bt crops, which risks undermining the benefits delivered by these important crop protection tools. Previous modelling and empirical studies have demonstrated that releases of insecticide- or Bt-susceptible insects genetically modified to express conditional female mortality can both dilute insecticide resistance and suppress pest populations. RESULTS: Here, we describe the first germline transformation of the fall armyworm and the development of a genetically engineered male-selecting self-limiting strain, OX5382G, which exhibits complete female mortality in the absence of an additive in the larval diet. Laboratory experiments showed that males of this strain are competitive against wild-type males for copulations with wild-type females, and that the OX5382G self-limiting transgene declines rapidly to extinction in closed populations following the cessation of OX5382G male releases. Population models simulating the release of OX5382G males in tandem with Bt crops and non-Bt 'refuge' crops show that OX5382G releases can suppress fall armyworm populations and delay the spread of resistance to insecticidal proteins. CONCLUSIONS: This article describes the development of self-limiting fall armyworm designed to control this pest by suppressing pest populations, and population models that demonstrate its potential as a highly effective method of managing resistance to Bt crops in pest fall armyworm populations. Our results provide early promise for a potentially valuable future addition to integrated pest management strategies for fall armyworm and other pests for which resistance to existing crop protection measures results in damage to crops and impedes sustainable agriculture.


Subject(s)
Hemolysin Proteins , Insecticides , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crop Protection , Crops, Agricultural/genetics , Endotoxins , Female , Hemolysin Proteins/genetics , Insecticides/pharmacology , Male , Plants, Genetically Modified/metabolism , Spodoptera/genetics , Zea mays/genetics
2.
J Evol Biol ; 32(10): 1163-1170, 2019 10.
Article in English | MEDLINE | ID: mdl-31334893

ABSTRACT

The endosymbiotic bacterium Wolbachia is perhaps the greatest panzootic in the history of life on Earth, yet remarkably little is known regarding the factors that determine its incidence across species. One possibility is that Wolbachia more easily invades species with structured populations, due to the increased strength of genetic drift and higher initial frequency of infection. This should enable strains that induce mating incompatibilities to more easily cross the threshold prevalence above which they spread to either fixation or a stable equilibrium infection prevalence. Here, we provide empirical support for this hypothesis by analysing the relationship between female dispersal (as a proxy for population structure) and the incidence of Wolbachia across 250 species of ants. We show that species in which the dispersal of reproductive females is limited are significantly more likely to be infected with Wolbachia than species whose reproductive ecology is consistent with significant dispersal of females, and that this relationship remains after controlling for host phylogeny. We suggest that structured host populations, in this case resulting from limited female dispersal, may be an important feature determining how easily Wolbachia becomes successfully established in a novel host, and thus its occurrence across a wide diversity of invertebrate hosts.


Subject(s)
Ants/microbiology , Wolbachia/physiology , Animals , Ants/genetics , Female , Species Specificity , Symbiosis
3.
J Insect Physiol ; 116: 49-56, 2019 07.
Article in English | MEDLINE | ID: mdl-31015014

ABSTRACT

Parasites are an important selection pressure for all organisms, and host immune responses are key in shaping host-parasite interactions. Host species with strong immune defences may be expected to experience lower parasitism; on the other hand, investment in immune function is costly, so hosts that have evolved to invest more in immune defence may be expected to have been under greater selection pressure from parasites. Disentangling the coevolutionary dynamics requires comparative studies that quantify the immune responses of potential hosts of parasites in a community, but such studies are rare. Here, we studied the immune defences of six leaf-cutting ant species in a community for which their relationships with phorid fly parasitoid species are known. We tested whether the strength of the baseline immune defences of the different ant species correlated positively or negatively with parasitoid load (number and abundance of parasitoid species exploiting the ant species), and host specialization of parasitoid species (the proportion of specialist parasitoids using each host). We measured four immune variables: i) the encapsulation response to a standard challenge, levels of ii) phenoloxidase (PO) and iii) prophenoloxidae (PPO) immune enzymes, and iv) the number of haemocytes. We found that ant species differed in their encapsulation response, PO levels and number of haemocytes, and that there was a positive, not negative, correlation across ant species between the strength of several of the immune variables and parasitoid load, but not for host specialization. This is in keeping with the hypothesis that higher parasitoid load selects for greater investment in immune defences. Our results suggest that immunity may be an important factor accounting for the dynamics of host-parasitoid interactions in this community. Similar community-level studies may be insightful, both for understanding host-parasite community ecology and for applications such as biocontrol.


Subject(s)
Ants/immunology , Diptera/physiology , Host-Parasite Interactions/immunology , Animals , Ants/parasitology , Biodiversity , Immunocompetence , Species Specificity
4.
Proc Biol Sci ; 283(1822)2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26763704

ABSTRACT

The ubiquitous trade-off between survival and costly reproduction is one of the most fundamental constraints governing life-history evolution. In numerous animals, gonadotropic hormones antagonistically suppressing immunocompetence cause this trade-off. The queens of many social insects defy the reproduction-survival trade-off, achieving both an extraordinarily long life and high reproductive output, but how they achieve this is unknown. Here we show experimentally, by integrating quantification of gene expression, physiology and behaviour, that the long-lived queens of the ant Lasius niger have escaped the reproduction-immunocompetence trade-off by decoupling the effects of a key endocrine regulator of fertility and immunocompetence in solitary insects, juvenile hormone (JH). This modification of the regulatory architecture enables queens to sustain a high reproductive output without elevated JH titres and suppressed immunocompetence, providing an escape from the reproduction-immunocompetence trade-off that may contribute to the extraordinary lifespan of many social insect queens.


Subject(s)
Ants/physiology , Hierarchy, Social , Juvenile Hormones/pharmacology , Animals , Ants/immunology , Immunocompetence/drug effects , Juvenile Hormones/metabolism , Juvenile Hormones/physiology , Longevity , Reproduction/drug effects , Reproduction/physiology
5.
Curr Biol ; 23(4): 323-7, 2013 Feb 18.
Article in English | MEDLINE | ID: mdl-23394832

ABSTRACT

The possession of an efficient communication system and an ability to distinguish between young stages are essential attributes that enable eusocial insects to live in complex integrated societies. Although ants communicate primarily via chemicals, it is increasingly clear that acoustical signals also convey important information, including status, between adults in many species. However, all immature stages were believed to be mute. We confirm that larvae and recently formed pupae of Myrmica ants are mute, yet once they are sclerotized, the pupae possess a fully functioning stridulatory organ. The sounds generated by worker pupae were similar to those of workers but were emitted as single pulses rather than in the long sequences characteristic of adults; both induced the same range and intensity of benevolent behaviors when played back to unstressed workers. Both white and sclerotized pupae have a higher social status than larvae within Myrmica colonies, but the latter's status fell significantly after they were made mute. Our results suggest that acoustical signals supplant semiochemicals as a means of identification in sclerotized pupae, perhaps because their hardened integuments block the secretion of brood pheromones or because their developing adult secretions initially differ from overall colony odors.


Subject(s)
Animal Communication , Ants/physiology , Pupa/physiology , Sound , Animals , Ants/growth & development , Larva/physiology , Pheromones/physiology , Social Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...