Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Insect Physiol ; 139: 104394, 2022.
Article in English | MEDLINE | ID: mdl-35413337

ABSTRACT

Diapause is a pre-programmed arrest of development allowing insects to survive in unfavorable environments. In adult insects, diapause termination is often followed by a reallocation of macronutrients and a transition to reproduction, and in some insects, this transition can be achieved using narcosis with CO2. However, whether CO2narcosis and diapause act in concert to affect reproduction remains unknown. Here, we investigated the separated and combined effects of diapause and CO2on female reproduction in queens of the common eastern bumble bee Bombus impatiens. Queens were treated with CO2 following a cold storage period (zero days, two weeks, two and four months) and were compared with untreated queens at the same timepoints for survival, colony initiation, egg-laying latency, and offspring production. We found that both CO2 and a period of at least two months in cold storage induced a transition to egg laying in gynes, and as expected, survival decreased with cold storage length. When CO2 and cold storage were combined, CO2narcosis positively affected egg laying in the earlier timepoints but its impact diminished following a longer cold storage. These data suggest that the impacts of CO2narcosis and cold storage are partially additive, and application of CO2 is effective only after a short cold storage. It further demonstrates that CO2 has complex effects on insect reproduction that are independent from diapause.


Subject(s)
Carbon Dioxide , Stupor , Animals , Bees , Carbon Dioxide/pharmacology , Female , Genes, Insect , Oviposition , Reproduction
2.
J Exp Biol ; 223(Pt 9)2020 05 04.
Article in English | MEDLINE | ID: mdl-32205359

ABSTRACT

Insects maximize their fitness by exhibiting predictable and adaptive seasonal patterns in response to changing environmental conditions. These seasonal patterns are often expressed even when insects are kept in captivity, suggesting they are functionally and evolutionarily important. In this study, we examined whether workers of the eusocial bumble bee Bombus impatiens maintained a seasonal signature when kept in captivity. We used an integrative approach and compared worker egg laying, ovarian activation, body size and mass, lipid content in the fat body, cold tolerance and expression of genes related to cold tolerance, metabolism and stress throughout colony development. We found that bumble bee worker physiology and gene expression patterns shift from reproductive-like to diapause-like as the colony ages. Workers eclosing early in the colony cycle had increased egg laying and ovarian activation, and reduced cold tolerance, body size, mass and lipid content in the fat body, in line with a reproductive-like profile, while late-eclosing workers exhibited the opposite characteristics. Furthermore, expression patterns of genes associated with reproduction and diapause differed between early- and late-eclosing workers, partially following the physiological patterns. We suggest that a seasonal signature, innate to individual workers, the queen or the colony, is used by workers as a social cue determining the phenology of the colony and discuss possible implications for understanding reproductive division of labor in bumble bee colonies and the evolutionary divergence of female castes in the genus Bombus.


Subject(s)
Diapause , Reproduction , Animals , Bees/genetics , Female , Gene Expression , Insecta , Oviposition , Reproduction/genetics
3.
Insects ; 11(2)2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32085627

ABSTRACT

Pollinator nutritional ecology provides insights into plant-pollinator interactions, coevolution, and the restoration of declining pollinator populations. Bees obtain their protein and lipid nutrient intake from pollen, which is essential for larval growth and development as well as adult health and reproduction. Our previous research revealed that pollen protein to lipid ratios (P:L) shape bumble bee foraging preferences among pollen host-plant species, and these preferred ratios link to bumble bee colony health and fitness. Yet, we are still in the early stages of integrating data on P:L ratios across plant and bee species. Here, using a standard laboratory protocol, we present over 80 plant species' protein and lipid concentrations and P:L values, and we evaluate the P:L ratios of pollen collected by three bee species. We discuss the general phylogenetic, phenotypic, behavioral, and ecological trends observed in these P:L ratios that may drive plant-pollinator interactions; we also present future research questions to further strengthen the field of pollination nutritional ecology. This dataset provides a foundation for researchers studying the nutritional drivers of plant-pollinator interactions as well as for stakeholders developing planting schemes to best support pollinators.

SELECTION OF CITATIONS
SEARCH DETAIL
...