Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Open Forum Infect Dis ; 10(5): ofad278, 2023 May.
Article in English | MEDLINE | ID: mdl-37265667

ABSTRACT

Prolonged coronavirus disease 2019 may generate new viral variants. We report an immunocompromised patient treated with monoclonal antibodies who experienced rebound of viral RNA and emergence of an antibody-resistant (>1000-fold) variant containing 5 mutations in the spike gene. The mutant virus was isolated from respiratory secretions, suggesting the potential for secondary transmission.

2.
Invest Ophthalmol Vis Sci ; 64(2): 19, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36799874

ABSTRACT

Purpose: Corynebacterium spp. are Gram-positive bacteria commonly associated with the ocular surface. Corynebacterium mastitidis was isolated from mouse eyes and was demonstrated to induce a beneficial immune response that can protect the eye from pathogenic infection. Because eye-relevant Corynebacterium spp. are not well described, we generated a C. mast transposon (Tn) mutant library to gain a better understanding of the nature of eye-colonizing bacteria. Methods: Tn mutagenesis was performed with a custom Tn5-based transposon that incorporated a promoterless gene for the fluorescent protein mCherry. We screened our library using flow cytometry and enzymatic assays to identify useful mutants that demonstrate the utility of our approach. Results: Fluorescence-activated cell sorting (FACS) of mCherry+ bacteria allowed us to identify a highly fluorescent mutant that was detectable on the murine ocular surface using microscopy. We also identified a functional knockout that was unable to hydrolyze urea, UreaseKO. Although uric acid is an antimicrobial factor produced in tears, UreaseKO bacterium maintained an ability to colonize the eye, suggesting that urea hydrolysis is not required for colonization. In vitro and in vivo, both mutants maintained the potential to stimulate protective immunity as compared to wild-type C. mast. Conclusions: In sum, we describe a method to genetically modify an eye-colonizing microbe, C. mast. Furthermore, the procedures outlined here will allow for the continued development of genetic tools for modifying ocular Corynebacterium spp., which will lead to a more complete understanding of the interactions between the microbiome and host immunity at the ocular surface.


Subject(s)
Eye , Microbiota , Animals , Mice , Eye/microbiology , Corynebacterium/genetics , Vision, Ocular
3.
Nat Commun ; 13(1): 4696, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35982054

ABSTRACT

Mutations in the spike glycoproteins of SARS-CoV-2 variants of concern have independently been shown to enhance aspects of spike protein fitness. Here, we describe an antibody fragment (VH ab6) that neutralizes all major variants including the recently emerged BA.1 and BA.2 Omicron subvariants, with a unique mode of binding revealed by cryo-EM studies. Further, we provide a comparative analysis of the mutational effects within previously emerged variant spikes and identify the structural role of mutations within the NTD and RBD in evading antibody neutralization. Our analysis shows that the highly mutated Gamma N-terminal domain exhibits considerable structural rearrangements, partially explaining its decreased neutralization by convalescent sera. Our results provide mechanistic insights into the structural, functional, and antigenic consequences of SARS-CoV-2 spike mutations and highlight a spike protein vulnerability that may be exploited to achieve broad protection against circulating variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Epitopes/genetics , Humans , Immunization, Passive , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Serotherapy
4.
iScience ; 25(8): 104798, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35875685

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VOCs) requires the development of next-generation biologics with high neutralization breadth. Here, we characterized a human VH domain, F6, which we generated by sequentially panning large phage-displayed VH libraries against receptor binding domains (RBDs) containing VOC mutations. Cryo-EM analyses reveal that F6 has a unique binding mode that spans a broad surface of the RBD and involves the antibody framework region. Attachment of an Fc region to a fusion of F6 and ab8, a previously characterized VH domain, resulted in a construct (F6-ab8-Fc) that broadly and potently neutralized VOCs including Omicron. Additionally, prophylactic treatment using F6-ab8-Fc reduced live Beta (B.1.351) variant viral titers in the lungs of a mouse model. Our results provide a new potential therapeutic against SARS-CoV-2 variants including Omicron and highlight a vulnerable epitope within the spike that may be exploited to achieve broad protection against circulating variants.

5.
bioRxiv ; 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35194603

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VOCs) requires the development of next-generation biologics that are effective against a variety of strains of the virus. Herein, we characterize a human V H domain, F6, which we generated by sequentially panning large phage displayed V H libraries against receptor binding domains (RBDs) containing VOC mutations. Cryo-EM analyses reveal that F6 has a unique binding mode that spans a broad surface of the RBD and involves the antibody framework region. Attachment of an Fc region to a fusion of F6 and ab8, a previously characterized V H domain, resulted in a construct (F6-ab8-Fc) that neutralized Omicron pseudoviruses with a half-maximal neutralizing concentration (IC 50 ) of 4.8 nM in vitro . Additionally, prophylactic treatment using F6-ab8-Fc reduced live Beta (B.1.351) variant viral titers in the lungs of a mouse model. Our results provide a new potential therapeutic against SARS-CoV-2 VOCs - including the recently emerged Omicron variant - and highlight a vulnerable epitope within the spike protein RBD that may be exploited to achieve broad protection against circulating variants.

6.
Appl Environ Microbiol ; 86(14)2020 07 02.
Article in English | MEDLINE | ID: mdl-32414795

ABSTRACT

Tunable control of gene expression is an invaluable tool for biological experiments. In this study, we describe a new xylose-inducible promoter system and evaluate it in both Pseudomonas aeruginosa and Pseudomonas fluorescens The Pxut promoter, derived from the P. fluorescensxut operon, was incorporated into a broad-host-range pBBR1-based plasmid and was compared to the Escherichia coli-derived PBAD promoter using gfp as a reporter. Green fluorescent protein (GFP) fluorescence from the Pxut promoter was inducible in both Pseudomonas species, but not in E. coli, which may facilitate the cloning of genes toxic to E. coli to generate plasmids. The Pxut promoter was activated at a lower inducer concentration than PBAD in P. fluorescens, and higher gfp levels were achieved using Pxut Flow cytometry analysis indicated that Pxut was leakier than PBAD in the Pseudomonas species tested but was expressed in a higher proportion of cells when induced. d-Xylose as a sole carbon source did not support the growth of P. aeruginosa or P. fluorescens and is less expensive than many other commonly used inducers, which could facilitate large-scale applications. The efficacy of this system was demonstrated by its use to reveal a role for the P. aeruginosa type II secretion system gene xcpQ in bacterial inhibition of corneal epithelial cell wound closure. This study introduces a new inducible promoter system for gene expression for use in Pseudomonas species.IMPORTANCEPseudomonas species are enormously important in human infections, in biotechnology, and as model systems for investigating basic science questions. In this study, we have developed a xylose-inducible promoter system, evaluated it in P. aeruginosa and P. fluorescens, and found it to be suitable for the strong induction of gene expression. Furthermore, we have demonstrated its efficacy in controlled gene expression to show that a type II secretion system protein from P. aeruginosa, XcpQ, is important for host-pathogen interactions in a corneal wound closure model.


Subject(s)
Bacterial Proteins/genetics , Membrane Proteins/genetics , Promoter Regions, Genetic , Pseudomonas aeruginosa/genetics , Pseudomonas fluorescens/genetics , Re-Epithelialization/genetics , Type II Secretion Systems/genetics , Xylose/metabolism , Bacterial Proteins/metabolism , Base Sequence , Epithelium, Corneal/injuries , Membrane Proteins/metabolism , Pseudomonas aeruginosa/metabolism , Pseudomonas fluorescens/metabolism , Sequence Analysis, DNA , Type II Secretion Systems/metabolism
7.
J Virol ; 94(2)2020 01 06.
Article in English | MEDLINE | ID: mdl-31645447

ABSTRACT

Herpes simplex virus 1 (HSV-1) causes a lifelong infection of neurons that innervate barrier sites like the skin and mucosal surfaces like the eye. After primary infection of the cornea, the virus enters latency within the trigeminal ganglion (TG), from which it can reactivate throughout the life of the host. Viral latency is maintained, in part, by virus-specific CD8+ T cells that nonlethally interact with infected neurons. When CD8+ T cell responses are inhibited, HSV-1 can reactivate, and these recurrent reactivation events can lead to blinding scarring of the cornea. In the C57BL/6 mouse, CD8+ T cells specific for the immunodominant epitope from glycoprotein B maintain functionality throughout latency, while CD8+ T cells specific for subdominant epitopes undergo functional impairment that is associated with the expression of the inhibitory checkpoint molecule programmed death 1 (PD-1). Here, we investigate the checkpoint molecule T cell immunoglobulin and mucin domain-containing 3 (Tim-3), which has traditionally been associated with CD8+ T cell exhaustion. Unexpectedly, we found that Tim-3 was preferentially expressed on highly functional ganglionic CD8+ T cells during acute and latent HSV-1 infection. This, paired with data that show that Tim-3 expression on CD8+ T cells in the latently infected TG is influenced by viral gene expression, suggests that Tim-3 is an indicator of recent T cell stimulation, rather than functional compromise, in this model. We conclude that Tim-3 expression is not sufficient to define functional compromise during latency; however, it may be useful in identifying activated cells within the TG during HSV-1 infection.IMPORTANCE Without an effective means of eliminating HSV-1 from latently infected neurons, efforts to control the virus have centered on preventing viral reactivation from latency. Virus-specific CD8+ T cells within the infected TG have been shown to play a crucial role in inhibiting viral reactivation, and with a portion of these cells exhibiting functional impairment, checkpoint molecule immunotherapies have presented a potential solution to enhancing the antiviral response of these cells. In pursuing this potential treatment strategy, we found that Tim-3 (often associated with CD8+ T cell functional exhaustion) is not upregulated on impaired cells but instead is upregulated on highly functional cells that have recently received antigenic stimulation. These findings support a role for Tim-3 as a marker of activation rather than exhaustion in this model, and we provide additional evidence for the hypothesis that there is persistent viral gene expression in the HSV-1 latently infected TG.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Gene Expression Regulation/immunology , Hepatitis A Virus Cellular Receptor 2/immunology , Herpesvirus 1, Human/physiology , Lymphocyte Activation , Programmed Cell Death 1 Receptor/immunology , Trigeminal Ganglion , Virus Latency/immunology , Animals , Biomarkers , CD8-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/virology , Female , Mice , Trigeminal Ganglion/immunology , Trigeminal Ganglion/pathology , Trigeminal Ganglion/virology
8.
J Virol ; 94(5)2020 02 14.
Article in English | MEDLINE | ID: mdl-31826989

ABSTRACT

Reactivation of herpes simplex virus 1 (HSV-1) from neurons in sensory ganglia such as the trigeminal ganglia (TG) is influenced by virus-specific CD8+ T cells that infiltrate the ganglia at the onset of latency and contract to a stable activated tissue-resident memory population. In C57BL/6 mice, half of HSV-specific CD8+ T cells (gB-CD8s) recognize one dominant epitope (residues 498 to 505) on glycoprotein B (gB498-505), while the remainder (non-gB-CD8s) recognize 19 subdominant epitopes from 12 viral proteins. To address how expression by HSV-1 influences the formation and ganglionic retention of CD8+ T cell populations, we developed recombinant HSV-1 with the native immunodominant gB epitope disrupted but then expressed ectopically from different viral promoters. In mice, the epitope expressed from the gB promoter restored full gB-CD8 immunodominance to 50%. Intriguingly, earlier expression from constitutive, immediate-early, and early promoters did not significantly increase immunodominance, indicating that these promoters cannot elicit more than half of the CD8 compartment. Epitope expressed from candidate viral promoters of "true late" HSV-1 genes either delayed or reduced the priming efficiency of gB-CD8s and their levels in the TG at early times. HSV expressing the epitope from the full latency-associated transcript promoter did not efficiently prime gB-CD8s; however, gB-CD8s primed by a concurrent wild-type flank infection infiltrated the TG and were retained long term, suggesting that latent epitope expression is sufficient to retain gB-CD8s. Taken together, the data indicate that viral promoters shape latent HSV-1-specific CD8+ T cell populations and should be an important consideration in future vaccine design.IMPORTANCE Latency of HSV-1 in host neurons enables long-term persistence from which reactivation may occur to cause recurrent diseases, such as blinding herpetic stromal keratitis. Latency is not antigenically silent, and viral proteins are sporadically expressed at low levels without full virion production. This protein expression is recognized by ganglion-resident HSV-1-specific CD8+ T cells that maintain a protective resident population. Since these T cells can influence lytic/latent decisions in reactivating neurons, we argue that improving their ganglionic retention and function may offer a strategy in vaccine design to reduce reactivation and recurrent disease. To understand factors driving the infiltration and retention of ganglionic CD8s, we examined several HSV recombinants that have different viral promoters driving expression of the immunodominant gB epitope. We show that the selection of epitope promoter influences CD8+ T cell population hierarchies and their function.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Ganglia/immunology , Herpes Simplex/immunology , Herpesvirus 1, Human/immunology , Immunodominant Epitopes/immunology , Animals , Chlorocebus aethiops , Disease Models, Animal , Female , Ganglia, Sensory/immunology , Herpes Simplex/virology , Herpesvirus 1, Human/genetics , Keratitis, Herpetic/immunology , Kinetics , Mice , Mice, Inbred C57BL , Trigeminal Ganglion/virology , Vero Cells , Viral Envelope Proteins/genetics
9.
PLoS Pathog ; 13(12): e1006732, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29206240

ABSTRACT

Herpes simplex virus type 1 (HSV-1) latency in sensory ganglia such as trigeminal ganglia (TG) is associated with a persistent immune infiltrate that includes effector memory CD8+ T cells that can influence HSV-1 reactivation. In C57BL/6 mice, HSV-1 induces a highly skewed CD8+ T cell repertoire, in which half of CD8+ T cells (gB-CD8s) recognize a single epitope on glycoprotein B (gB498-505), while the remainder (non-gB-CD8s) recognize, in varying proportions, 19 subdominant epitopes on 12 viral proteins. The gB-CD8s remain functional in TG throughout latency, while non-gB-CD8s exhibit varying degrees of functional compromise. To understand how dominance hierarchies relate to CD8+ T cell function during latency, we characterized the TG-associated CD8+ T cells following corneal infection with a recombinant HSV-1 lacking the immunodominant gB498-505 epitope (S1L). S1L induced a numerically equivalent CD8+ T cell infiltrate in the TG that was HSV-specific, but lacked specificity for gB498-505. Instead, there was a general increase of non-gB-CD8s with specific subdominant epitopes arising to codominance. In a latent S1L infection, non-gB-CD8s in the TG showed a hierarchy targeting different epitopes at latency compared to at acute times, and these cells retained an increased functionality at latency. In a latent S1L infection, these non-gB-CD8s also display an equivalent ability to block HSV reactivation in ex vivo ganglionic cultures compared to TG infected with wild type HSV-1. These data indicate that loss of the immunodominant gB498-505 epitope alters the dominance hierarchy and reduces functional compromise of CD8+ T cells specific for subdominant HSV-1 epitopes during viral latency.


Subject(s)
CD8-Positive T-Lymphocytes/virology , Herpes Simplex/immunology , Herpesvirus 1, Human/immunology , Immunodominant Epitopes/metabolism , Trigeminal Ganglion/virology , Viral Envelope Proteins/metabolism , Amino Acid Substitution , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Cell Line , Cells, Cultured , Chlorocebus aethiops , DNA, Recombinant/metabolism , Eye Infections, Viral/immunology , Eye Infections, Viral/metabolism , Eye Infections, Viral/pathology , Eye Infections, Viral/virology , Female , Gene Deletion , Herpes Simplex/metabolism , Herpes Simplex/pathology , Herpes Simplex/virology , Herpesvirus 1, Human/physiology , Mice, Inbred C57BL , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Point Mutation , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Trigeminal Ganglion/immunology , Trigeminal Ganglion/pathology , Vero Cells , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Virus Activation , Virus Latency
10.
J Immunol ; 198(4): 1706-1717, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28062697

ABSTRACT

HSV-1 infections of the cornea range in severity from minor transient discomfort to the blinding disease herpes stromal keratitis, yet most patients experience a single episode of epithelial keratitis followed by re-establishment of a clear cornea. We asked whether a single transient episode of HSV-1 epithelial keratitis causes long-term changes in the corneal microenvironment that influence immune responses to subsequent corneal infection or trauma. We showed that C57BL/6 mouse corneas infected with HSV-1 KOS, which induces transient herpes epithelial keratitis without herpes stromal keratitis sequelae, possessed a significant leukocytic infiltrate composed primarily of CD4+ T cells and macrophages along with elevated chemokines and cytokines that persisted without loss of corneal clarity (subclinical inflammation). Chemokine and cytokine expression was CD4+ T cell dependent, in that their production was significantly reduced by systemic CD4+ T cell depletion starting before infection, although short-term (3-d) local CD4+ T cell depletion postinfection did not influence chemokine levels in cornea. Corneas with subclinical inflammation developed significantly greater trauma-induced inflammation when they were recipients of syngeneic corneal transplants but also exhibited significantly increased resistance to infections by unrelated pathogens, such as pseudorabies virus. The resistance to pseudorabies virus was CD4+ T cell dependent, because it was eliminated by local CD4+ T cell depletion from the cornea. We conclude that transient HSV-1 corneal infections cause long-term alterations of the corneal microenvironment that provide CD4-dependent innate resistance to subsequent infections by antigenically unrelated pathogens.


Subject(s)
Asymptomatic Infections , CD4-Positive T-Lymphocytes/immunology , Cornea/immunology , Herpes Simplex/immunology , Herpesvirus 1, Human/immunology , Herpesvirus 1, Suid/pathogenicity , Keratitis, Herpetic/immunology , Pseudorabies/immunology , Animals , Chemokines/biosynthesis , Chemokines/immunology , Cornea/pathology , Cornea/virology , Corneal Transplantation , Cytokines/biosynthesis , Cytokines/immunology , Female , Herpes Simplex/virology , Herpesvirus 1, Suid/immunology , Immunity, Innate , Inflammation/immunology , Inflammation/virology , Keratitis, Herpetic/physiopathology , Keratitis, Herpetic/virology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...