Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Physiol Res ; 66(1): 63-73, 2017 03 31.
Article in English | MEDLINE | ID: mdl-27782747

ABSTRACT

Patch clamp recordings carried out in the inside-out configuration revealed activity of three kinds of channels: nonselective cation channels, small-conductance K(+) channels, and large-conductance anion channels. The nonselective cation channels did not distinguish between Na(+) and K(+). The unitary conductance of these channels reached 28 pS in a symmetrical concentration of 200 mM NaCl. A lower value of this parameter was recorded for the small-conductance K(+) channels and in a 50-fold gradient of K(+) (200 mM/4 mM) it reached 8 pS. The high selectivity of these channels to potassium was confirmed by the reversal potential (-97 mV), whose value was close to the equilibrium potential for potassium (-100 mV). One of the features of the largeconductance anion channels was high conductance amounting to 493 pS in a symmetrical concentration of 200 mM NaCl. The channels exhibited three subconductance levels. Moreover, an increase in the open probability of the channels at voltages close to zero was observed. The anion selectivity of the channels was low, because the channels were permeable to both Cl(-) and gluconate - a large anion. Research on the calcium dependence revealed that internal calcium activates nonselective cation channels and small-conductance K(+) channels, but not largeconductance anion channels.


Subject(s)
Cell Membrane/physiology , Fibroblasts/physiology , Ion Channels/physiology , Small-Conductance Calcium-Activated Potassium Channels/physiology , Voltage-Dependent Anion Channels/physiology , Animals , Cell Line , Mice
2.
Postepy Hig Med Dosw ; 54(3): 291-7, 2000.
Article in Polish | MEDLINE | ID: mdl-10941263

ABSTRACT

Electrophysiological methods, such as intracellular potential recording, ion activity measurements, patch-clamp were described. Special attention was paid to their modifications allowing application to plant cells.


Subject(s)
Electrophysiology/methods , Microelectrodes , Plant Physiological Phenomena , Ion Channels/metabolism , Patch-Clamp Techniques
3.
Planta ; 197(2): 392-8, 1995 Sep.
Article in English | MEDLINE | ID: mdl-11540724

ABSTRACT

Two glass microelectrodes were inserted from opposite sides of the root cap into statocytes of Lepidium sativum L. immersed in medium with or without cytochalasin D (CD). Intracellular potentials (Eis) of statocytes were measured with reference to an earthed electrode in the bathing solution. In the absence of CD, Ei values were -160 +/- 2 mV (n = 52) in vertical roots. During the recording of Eis, the roots were tilted from the vertical by 45 degrees so that in a tilted root one electrode was on the upper side and the other on the lower side; after 5 min the roots were returned to the vertical. At approximately 64 s after tilting (lasting 5-15 s) there was a transient lowering of Ei (more negative) by an average of 4.7 mV on both the upper and lower sides (n = 52). In some cases, this decrease in Ei was preceded by a transitory increase. Returning the roots to the vertical resulted in a response similar to that obtained by tilting. In roots treated with CD at a concentration of 3 (microM for 1 h, the initial Ei was -145 +/- 2 mV (n = 43), and the lowering of Ei on position change (tilting or returning) was smaller (2.0 mV) in some statocytes (n = 50) and higher (8.1 mV) in others (n = 14) compared to control roots (without and with DMSO). A higher concentration (10 microM) of CD and longer treatment (2 h) further reduced the decrease in Ei (1.1 mV) on position change (n = 26). The observed effects of CD support the hypothesis that statoliths in statocytes are anchored by actin filaments to the plasma membrane and/or to the cortical endoplasmic reticulum. Movement of statoliths during the first step of graviperception may lead to stress changes in actin filaments, affecting the transmembrane potential and also the Ei.


Subject(s)
Brassicaceae/physiology , Brassicaceae/ultrastructure , Gravitation , Gravitropism/physiology , Gravity Sensing/physiology , Plant Root Cap/physiology , Brassicaceae/drug effects , Cytochalasin D/pharmacology , Electrophysiology , Endoplasmic Reticulum/physiology , Membrane Potentials/drug effects , Membrane Potentials/physiology , Microelectrodes , Plant Root Cap/drug effects , Plant Root Cap/ultrastructure , Signal Transduction/physiology
4.
Plant Physiol ; 106(3): 1073-1084, 1994 Nov.
Article in English | MEDLINE | ID: mdl-12232388

ABSTRACT

Intracellular Ca2+, K+, Cl-, and NO3- activities were measured with ion-selective microelectrodes in the liverwort Conocephalum conicum L. at rest, during dark/light changes, and in the course of action potentials triggered by light or electrical stimuli. The average free cytosolic Ca2+ concentration was 231 [plus or minus] 65 nM. We did not observe any light-dependent changes of the free cytosolic Ca2+ concentration as long as no action potential was triggered. During action potentials, on average a 2-fold increase of the free cytoplasmic Ca2+ concentration was recorded. Intracellular K+ activity was 76 [plus or minus] 10 mM. It did not depend on K+ concentration changes in the bath solution between 0.1 and 10 mM. The average equilibrium potential for K+ in the standard medium containing 1 mM K+ was -110 mV, which differed significantly from the resting potential of -151 [plus or minus] 2 mV. During action potentials, either a slight decrease or no changes in intracellular K+ activity were recorded. The average Cl- activity was 7.4 [plus or minus] 0.2 mM in the cytoplasm and 43.5 [plus or minus] 7 mM in the vacuole. The activities of NO3- were 0.63 [plus or minus] 0.05 mM in the cytoplasm and 3.0 [plus or minus] 0.3 mM in the vacuole. For both anions the vacuolar activity was 5 to 6 times higher than the cytoplasmic activity. After the light was switched off both the Cl- and the NO3- activity showed either no change or a slight increase. Illumination caused a gradual return to previous values or no change. During action potentials a slight decrease of intracellular Cl- activity was recorded. It was concluded that in Conocephalum, as in characean cells, chloride channels are involved in the depolarization phase of the action potentials. We discuss a model for the ion fluxes during an action potential in Conocephalum.

SELECTION OF CITATIONS
SEARCH DETAIL
...