Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Prosthodont Res ; 66(2): 326-332, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-34305085

ABSTRACT

PURPOSE: High-definition cone-beam computed tomography (HD-CBCT) offers superior image quality at the cost of higher radiation dose compared to low-dose CBCT (LD-CBCT). The aim of this study was to investigate whether peri-implant bone lesions can be accurately quantified using LD-CBCT, even when including the influence of surrounding tissues. METHODS: Twelve titanium implants restored with all-ceramic crowns were placed in bovine bone, and peri-implant lesions were prepared. Radiographic imaging was performed using IR (intraoral radiography), HD-CBCT and LD-CBCT. To simulate the in-vivo situation, the samples were placed inside a dry human mandible, and a second LD-CBCT imaging was performed (LD-CBCT*). The datasets were presented to four observers in random order. Maximum lesion depth and width were measured in a standardized mesiodistal slice in IR, HD-CBCT, LD-CBCT, and LD-CBCT*. Mean lesion depth and width measurements for each sample in HD-CBCT served as reference. RESULTS: Interrater agreement was slight for depth and excellent for width in HD-CBCT and both LD modes. For all observers, measurement deviations from HD-CBCT were below 0.3 mm in the LD protocols (LD-CBCT depth: 0.22 ± 0.17 mm, width: 0.22 ± 0.13 mm; LD-CBCT* depth: 0.24 ± 0.23 mm, width: 0.25 ± 0.21 mm) and at 0.4 mm in IR. CONCLUSION: Absolute differences between LD-CBCT and HD-CBCT are small, although surrounding tissues decrease LD-CBCT image quality. Within the limitations of an in-vitro trial, LD-CBCT may become an adequate imaging modality for monitoring peri-implant lesions at a substantially decreased radiation dose.


Subject(s)
Alveolar Bone Loss , Dental Implants , Animals , Cattle , Cone-Beam Computed Tomography/methods , Humans , Mandible/diagnostic imaging , Titanium
2.
J Dent ; 112: 103744, 2021 09.
Article in English | MEDLINE | ID: mdl-34252488

ABSTRACT

OBJECTIVES: To investigate the predictability and image quality of low-dose cone-beam computed tomography (LD-CBCT) in computer-guided implantology. METHODS: Pig cadaver mandibles were imaged using high-definition CBCT (HD-CBCT) and LD-CBCT (HD-CBCT: 85 kV, 6 mA, 14.2 s, 767 frames, 1184 mGycm2, voxel size 80 µm, effective dose 231 µSv; LD-CBCT: 85 kV, 10 mA, 2.1 s, 384 frames, 84 mGycm2, voxel size 160 µm, effective dose 16 µSv; Orthophos SL, Dentsply Sirona, Bensheim, Germany). Digital impressions were taken using intraoral scanning (IOS; Omnicam, Dentsply Sirona). Data of CBCT modalities and IOS were aligned. Forty-eight implants were planned virtually (24 implants per modality; Bone Level 4.1 × 10 mm; Straumann AG, Basel, Switzerland). Implants were inserted using templates by initial pilot drilling ("partially-guided implantation"). Implant positions were recorded using IOS. Geometric deviations between planned and definitive positions were assessed regarding implant apex, entry-point and angle. CBCT image quality was evaluated by raters twice on a four point scale. The results were exploratively compared (linear models, Mann-Whitney-U tests). RESULTS: Regarding implant apex, deviations were greater for LD-CBCT (mean 3.0±1.2 mm), as compared to HD-CBCT (mean 2.3±1.1 mm). For entry-point, no distinct difference was detected with a mean deviation of 1.4±0.9 mm in LD-CBCT, and 1.7±0.6 mm in HD-CBCT. Regarding angle, deviations were greater for LD-CBCT (mean 13.2±6.3°), as compared to HD-CBCT (mean 9.2±5.3°). The image quality of HD-CBCT provided to be better (mean 2.7±0.6) than that of LD-CBCT (mean 2.5±0.6). CONCLUSIONS: Within the partially-guided approach, the results underline the potential of LD-CBCT alternatively to HD-CBCT for computer-guided implantology. Advantages of HD-CBCT need to be balanced against the higher radiation dose.


Subject(s)
Dental Implants , Surgery, Computer-Assisted , Animals , Computers , Cone-Beam Computed Tomography , Dental Implantation, Endosseous , Imaging, Three-Dimensional , Swine
3.
Heliyon ; 7(4): e06645, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33898808

ABSTRACT

OBJECTIVES: Evaluating structural changes in oral epithelium can assist with the diagnosis of cancerous lesions. Two-dimensional (2D) non-invasive optical coherence tomography (OCT) is an established technique for this purpose. The objective of this study was to develop and test the diagnostic accuracy of a three-dimensional (3D) evaluation method. METHODS: The oral lip mucosa of 10 healthy volunteers was scanned using an 870-nm spectral-domain OCT device (SD-OCT) with enhanced depth imaging (EDI). Four raters semi-automatically segmented the epithelial layer twice. Thus, eighty 3D datasets were created and analyzed for epithelial thickness. To provide a reference standard for comparison, the raters took cross-sectional 2D measurements at representative sites. The correlation between the 2D and 3D measurements, as well as intra- and inter-rater reliability, were analyzed using intraclass correlation coefficients (ICC). RESULTS: Mean epithelial thickness was 280 ± 64µm (range 178-500 µm) and 268 ± 49µm (range 163-425 µm) for the 2D and 3D analysis, respectively. The inter-modality correlation of the thickness values was good (ICC: 0.76 [0.626-0.846]), indicating that 3D analysis of epithelial thickness provides valid results. Intra-rater and inter-rater reliability were good (3D analysis) and excellent (2D analysis), suggesting high reproducibility. CONCLUSIONS: Diagnostic accuracy was high for the developed 3D analysis of oral epithelia using non-invasive, radiation-free OCT imaging. CLINICAL SIGNIFICANCE: This new 3D technique could potentially be used to improve time-efficiency and quality in the diagnosis of epithelial lesions compared with the 2D reference standard.

4.
J Dent ; 102: 103458, 2020 11.
Article in English | MEDLINE | ID: mdl-32866552

ABSTRACT

OBJECTIVES: To evaluate the diagnostic accuracy of optical coherence tomography (OCT) for the non-invasive detection of caries adjacent to ceramic materials. METHODS: Disks made from five ceramic materials (hybrid ceramic, feldspathic ceramic, zirconia-reinforced lithium silicate, lithium disilicate, and high-translucent zirconia) were ground to the recommended material thickness for single crown restorations and laminated with a 100 µm thick layer of one of three adhesive cements. The disks were fixed to extracted human molars with or without carious lesions of one of three standardized sizes. A total of 240 stacks of cross-sectional scans obtained using an 870-nm SD-OCT with enhanced depth imaging (EDI) were presented to five raters. Diagnostic accuracy was determined by rating the teeth beneath the cemented material as carious or healthy. RESULTS: Carious samples were distinguished from sound teeth with high diagnostic accuracy, even for early stage caries. Sensitivity (SE) and specificity (SP) pooled over all raters and all materials were 0.9 and 0.97, respectively. When analyzing the effect of the ceramic and cement materials on detection rates, high SE and SP values of >0.96 and >0.91, respectively, were recorded for lithium disilicate, zirconia-reinforced lithium silicate, and high-translucent zirconia irrespective of the cement type. For hybrid and feldspathic ceramics, the cement material was found to have a significant effect on caries detection. CONCLUSIONS: Given its high diagnostic accuracy, 870-nm SD-OCT with EDI might be useful for the detection of caries beneath restorative materials. The effect of the prescribed ceramic and cement material on optical penetration depth is substantial.


Subject(s)
Dental Caries , Tomography, Optical Coherence , Ceramics , Cross-Sectional Studies , Dental Caries/diagnostic imaging , Dental Caries Susceptibility , Dental Porcelain , Humans , Materials Testing , Zirconium
SELECTION OF CITATIONS
SEARCH DETAIL
...