Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Environ Manage ; 347: 119034, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37832263

ABSTRACT

Peatlands are globally significant carbon sinks, but when disturbed, have the potential to release carbon back to the atmosphere as greenhouse gases. Feral horse populations in the Australian Alps degrade Sphagnum peatlands, which are highly sensitive to disturbance. However, the link between this degradation and peatland carbon cycling is not understood. Here, we compared the autumn daytime carbon dioxide (CO2) and methane (CH4) fluxes of 12 alpine and subalpine Sphagnum peatlands in Kosciuszko National Park, Australia. The presence of feral horses at these sites was correlated with higher carbon loss: sites with horses were losing carbon to the atmosphere (4.83 and 8.18 g CO2-e m-2 d-1 in areas of Sphagnum moss and bare soil, respectively), whereas sites without horses were removing carbon from the atmosphere (-6.39 g CO2-e m-2 d-1). Sites with feral horses also had higher soil bulk density, temperature, and electrical conductivity (EC), and higher water pH, EC, and turbidity, than sites without horses. Our findings suggest that excluding feral horses from peatland areas could reduce rates of carbon loss to the atmosphere, in addition to improving overall site condition, peat soil condition, and water quality. We discuss potential management applications, further research, and restoration opportunities arising from these results.


Subject(s)
Greenhouse Gases , Sphagnopsida , Horses , Animals , Carbon Dioxide/analysis , Sphagnopsida/metabolism , Australia , Soil , Greenhouse Gases/analysis , Greenhouse Gases/metabolism , Methane/analysis
3.
J Environ Manage ; 256: 109971, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31989987

ABSTRACT

Wetland ecosystems have a disproportionally large influence on the global carbon cycle. They can act as carbon sinks or sources depending upon their location, type, and condition. Rehabilitation of wetlands is gaining popularity as a nature-based approach to helping mitigate climate change; however, few studies have empirically tested the carbon benefits of wetland restoration, especially in freshwater environments. Here we investigated the effects of passive rehabilitation (i.e. fencing and agricultural release) of 16 semi-arid rain-filled freshwater wetlands in southeastern Australia. Eight control sites were compared with older (>10 year) or newer (2-5 year) rehabilitated sites, dominated by graminoids or eucalypts. Carbon stocks (soils and plant biomass), and emissions (carbon dioxide - CO2; and methane - CH4) were sampled across three seasons, representing natural filling and drawdown, and soil microbial communities were sampled in spring. We found no significant difference in soil carbon or greenhouse gas emissions between rehabilitated and control sites, however, plant biomass was significantly higher in older rehabilitated sites. Wetland carbon stocks were 19.21 t Corg ha-1 and 2.84 t Corg ha-1 for soils (top 20 cm; n = 137) and plant biomass (n = 288), respectively. Hydrology was a strong driver of wetland greenhouse gas emissions. Diffusive fluxes (n = 356) averaged 117.63 mmol CO2 m2 d-1 and 2.98 mmol CH4 m2 d-1 when wet, and 124.01 mmol CO2 m2 d-1 and -0.41 mmol CH4 m2 d-1 when dry. Soil microbial community richness was nearly 2-fold higher during the wet phase than the dry phase, including relative increases in Nitrososphaerales, Myxococcales and Koribacteraceae and methanogens Methanobacteriales. Vegetation type significantly influenced soil carbon, aboveground carbon, and greenhouse gas emissions. Overall, our results suggest that passive rehabilitation of rain-filled wetlands, while valuable for biodiversity and habitat provisioning, is ineffective for increasing carbon gains within 20 years. Carbon offsetting opportunities may be better in systems with faster sediment accretion. Active rehabilitation methods, particularly that reinstate the natural hydrology of drained wetlands, should also be considered.


Subject(s)
Ecosystem , Wetlands , Australia , Carbon Dioxide , Methane , Rain , Soil
4.
Dis Aquat Organ ; 130(1): 65-70, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30154273

ABSTRACT

Marine heterotrophic protists of the Labyrinthulomycota are of interest for their biotechnological (e.g. thraustochytrid production of lipids) and ecological (e.g. wasting disease and rapid blight by pathogens of the genus Labyrinthula) applications; culture-based laboratory studies are a central technique of this research. However, maintaining such microorganism cultures can be labour- and cost-intensive, with a high risk of culture contamination and die-off over time. Deep-freeze storage, or cryopreservation, can be used to maintain culture back-ups, as well as to preserve the genetic and phenotypic properties of the microorganisms; however, this method has not been tested for the ubiquitous marine protists Labyrinthula spp. In this study, we trialled 12 cryopreservation protocols on 3 Labyrinthula sp. isolates of varying colony morphological traits. After 6 mo at -80°C storage, the DMSO and glycerol protocols were the most effective cryoprotectants compared to methanol (up to 90% success vs. 50% success, respectively). The addition of 30% horse serum to the cryoprotectant solution increased Labyrinthula sp. growth success by 20-30%. We expect that these protocols will provide extra security for culture-based studies, as well as opportunities for long-term research on key Labyrinthula sp. isolates.


Subject(s)
Cryopreservation/methods , Stramenopiles/physiology , Animals , Cryoprotective Agents/pharmacology , Dimethyl Sulfoxide , Glycerol , Horses , Serum , Specimen Handling , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...