Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 295(16): 5404-5418, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32075906

ABSTRACT

Myostatin (or growth/differentiation factor 8 (GDF8)) is a member of the transforming growth factor ß superfamily of growth factors and negatively regulates skeletal muscle growth. Its dysregulation is implicated in muscle wasting diseases. SRK-015 is a clinical-stage mAb that prevents extracellular proteolytic activation of pro- and latent myostatin. Here we used integrated structural and biochemical approaches to elucidate the molecular mechanism of antibody-mediated neutralization of pro-myostatin activation. The crystal structure of pro-myostatin in complex with 29H4-16 Fab, a high-affinity variant of SRK-015, at 2.79 Å resolution revealed that the antibody binds to a conformational epitope in the arm region of the prodomain distant from the proteolytic cleavage sites. This epitope is highly sequence-divergent, having only limited similarity to other closely related members of the transforming growth factor ß superfamily. Hydrogen/deuterium exchange MS experiments indicated that antibody binding induces conformational changes in pro- and latent myostatin that span the arm region, the loops contiguous to the protease cleavage sites, and the latency-associated structural elements. Moreover, negative-stain EM with full-length antibodies disclosed a stable, ring-like antigen-antibody structure in which the two Fab arms of a single antibody occupy the two arm regions of the prodomain in the pro- and latent myostatin homodimers, suggesting a 1:1 (antibody:myostatin homodimer) binding stoichiometry. These results suggest that SRK-015 binding stabilizes the latent conformation and limits the accessibility of protease cleavage sites within the prodomain. These findings shed light on approaches that specifically block the extracellular activation of growth factors by targeting their precursor forms.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/chemistry , Molecular Docking Simulation , Myostatin/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Binding Sites , Humans , Myostatin/antagonists & inhibitors , Myostatin/immunology , Protein Binding , Protein Stability
2.
Hum Mol Genet ; 28(7): 1076-1089, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30481286

ABSTRACT

Spinal muscular atrophy (SMA) is a neuromuscular disease characterized by loss of α-motor neurons, leading to profound skeletal muscle atrophy. Patients also suffer from decreased bone mineral density and increased fracture risk. The majority of treatments for SMA, approved or in clinic trials, focus on addressing the underlying cause of disease, insufficient production of full-length SMN protein. While restoration of SMN has resulted in improvements in functional measures, significant deficits remain in both mice and SMA patients following treatment. Motor function in SMA patients may be additionally improved by targeting skeletal muscle to reduce atrophy and improve muscle strength. Inhibition of myostatin, a negative regulator of muscle mass, offers a promising approach to increase muscle function in SMA patients. Here we demonstrate that muSRK-015P, a monoclonal antibody which specifically inhibits myostatin activation, effectively increases muscle mass and function in two variants of the pharmacological mouse model of SMA in which pharmacologic restoration of SMN has taken place either 1 or 24 days after birth to reflect early or later therapeutic intervention. Additionally, muSRK-015P treatment improves the cortical and trabecular bone phenotypes in these mice. These data indicate that preventing myostatin activation has therapeutic potential in addressing muscle and bone deficiencies in SMA patients. An optimized variant of SRK-015P, SRK-015, is currently in clinical development for treatment of SMA.


Subject(s)
Muscular Atrophy, Spinal/genetics , Myostatin/genetics , Myostatin/physiology , Animals , Antibodies, Monoclonal , Disease Models, Animal , Mice , Motor Neurons/metabolism , Muscle Strength/physiology , Muscle, Skeletal/metabolism , Muscular Atrophy, Spinal/physiopathology , Myostatin/antagonists & inhibitors , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/genetics
3.
Curr Microbiol ; 64(2): 112-7, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22048160

ABSTRACT

Nitric oxide synthase (NOS), the enzyme responsible for the production of endogenous nitric oxide from arginine, has been recently discovered in a number of Gram-positive bacteria. While bacterial NOS has been implicated in mediating nitrosative stress, much remains unknown about the functional role of endogenous nitric oxide in bacteria. Using the known NOS inhibitor aminoguanidine, we examined changes in the protein expression profile using two-dimensional gel electrophoresis. Treatment with aminoguanidine induced several changes in protein expression in Bacillus subtilis. In particular, mreB-like protein (Mbl) was fully down-regulated in the aminoguanidine-treated samples. The expression of Mbl was also examined by reverse transcriptase-polymerase chain reaction and Mbl was found to be fully down-regulated at the transcriptional level as well. Given the role that Mbl plays in the maintenance of cytoskeletal structure, it appears that bacterial NOS may participate in specific biosynthetic pathways with ramifications toward the regulation of antibiotic resistance.


Subject(s)
Bacillus subtilis/drug effects , Bacterial Proteins/genetics , Down-Regulation/drug effects , Guanidines/pharmacology , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Bacterial/drug effects , Nitric Oxide Synthase/antagonists & inhibitors
4.
Proteome Sci ; 6: 17, 2008 Jun 04.
Article in English | MEDLINE | ID: mdl-18533041

ABSTRACT

BACKGROUND: Penicillium marneffei is a pathogenic fungus that afflicts immunocompromised individuals having lived or traveled in Southeast Asia. This species is unique in that it is the only dimorphic member of the genus. Dimorphism results from a process, termed phase transition, which is regulated by temperature of incubation. At room temperature, the fungus grows filamentously (mould phase), but at body temperature (37 degrees C), a uninucleate yeast form develops that reproduces by fission. Formation of the yeast phase appears to be a requisite for pathogenicity. To date, no genes have been identified in P. marneffei that strictly induce mould-to-yeast phase conversion. In an effort to help identify potential gene products associated with morphogenesis, protein profiles were generated from the yeast and mould phases of P. marneffei. RESULTS: Whole cell proteins from the early stages of mould and yeast development in P. marneffei were resolved by two-dimensional gel electrophoresis. Selected proteins were recovered and sequenced by capillary-liquid chromatography-nanospray tandem mass spectrometry. Putative identifications were derived by searching available databases for homologous fungal sequences. Proteins found common to both mould and yeast phases included the signal transduction proteins cyclophilin and a RACK1-like ortholog, as well as those related to general metabolism, energy production, and protection from oxygen radicals. Many of the mould-specific proteins identified possessed similar functions. By comparison, proteins exhibiting increased expression during development of the parasitic yeast phase comprised those involved in heat-shock responses, general metabolism, and cell-wall biosynthesis, as well as a small GTPase that regulates nuclear membrane transport and mitotic processes in fungi. The cognate gene encoding the latter protein, designated RanA, was subsequently cloned and characterized. The P. marneffei RanA protein sequence, which contained the signature motif of Ran-GTPases, exhibited 90% homology to homologous Aspergillus proteins. CONCLUSION: This study clearly demonstrates the utility of proteomic approaches to studying dimorphism in P. marneffei. Moreover, this strategy complements and extends current genetic methodologies directed towards understanding the molecular mechanisms of phase transition. Finally, the documented increased levels of RanA expression suggest that cellular development in this fungus involves additional signaling mechanisms than have been previously described in P. marneffei.

SELECTION OF CITATIONS
SEARCH DETAIL
...