Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Physiol Nutr Metab ; 41(8): 879-87, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27455036

ABSTRACT

The purpose of this study was to evaluate the effect of obesity and mild hypohydration on local sweating (LSR) and cutaneous vascular conductance (CVC) responses during passive heat stress in females. Thirteen obese (age, 24 ± 4 years; 45.4% ± 5.2% body fat) and 12 nonobese (age, 22 ± 2 years; 25.1% ± 3.9% body fat) females were passively heated (1.0 °C rectal temperature increase) while either euhydrated (EUHY) or mildly hypohydrated (HYPO; via fluid restriction). Chest and forearm LSR (ventilated capsule) and CVC (Laser Doppler flowmetry) onset, sensitivity, and plateau/steady state were recorded as mean body temperature increased (ΔTb). Participants began trials EUHY (urine specific gravity, Usg = 1.009 ± 0.006) or HYPO (Usg = 1.025 ± 0.004; p < 0.05), and remained EUHY or HYPO. Independent of obesity, HYPO decreased sweat sensitivity at the chest (HYPO = 0.79 ± 0.35, EUHY = 0.95 ± 0.39 Δmg·min(-1)·cm(-2)/°C ΔTb) and forearm (HYPO = 0.82 ± 0.39, EUHY = 1.06 ± 0.34 Δmg·min(-1)·cm(-2)/°C ΔTb); forearm LSR plateau was also decreased (HYPO = 0.66 ± 0.19, EUHY = 0.78 ± 0.23 mg·min(-1)·cm(-2); all p < 0.05). Overall, obese females had lower chest-sweat sensitivity (0.72 ± 0.35 vs. 1.01 ± 0.33 Δmg·min(-1)·cm(-2)/°C ΔTb) and plateau (0.55 ± 0.27 vs. 0.80 ± 0.25 mg·min(-1)·cm(-2); p < 0.05). While hypohydrated, obese females had a lower chest LSR (p < 0.05) versus nonobese females midway (0.45 ± 0.26 vs. 0.73 ± 0.23 mg·min(-1)·cm(-2)) and at the end (0.53 ± 0.27 vs. 0.81 ± 0.24 mg·min(-1)·cm(-2)) of heating. Furthermore, HYPO (relative to the EUHY trials) led to a greater decrease in CVC sensitivity in obese (-28 ± 27 Δ% maximal CVC/°C ΔTb) versus nonobese females (+9.2 ± 33 Δ% maximal CVC/°C ΔTb; p < 0.05). In conclusion, mild hypohydration impairs females' sweating responses during passive heat stress, and this effect is exacerbated when obese.


Subject(s)
Dehydration/physiopathology , Hot Temperature , Obesity/physiopathology , Skin/blood supply , Stress, Physiological , Sweating , Absorptiometry, Photon , Adult , Body Mass Index , Body Temperature , Exercise , Female , Humans , Obesity/complications , Regional Blood Flow , Surveys and Questionnaires , Sweat Glands/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...