Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Antioxidants (Basel) ; 13(2)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38397770

ABSTRACT

Due to their immediate exhalation after generation at the cellular/microbiome levels, exhaled volatile organic compounds (VOCs) may provide real-time information on pathophysiological mechanisms and the host response to infection. In recent years, the metabolic profiling of the most frequent respiratory infections has gained interest as it holds potential for the early, non-invasive detection of pathogens and the monitoring of disease progression and the response to therapy. Using previously unpublished data, randomly selected individuals from a COVID-19 test center were included in the study. Based on multiplex PCR results (non-SARS-CoV-2 respiratory pathogens), the breath profiles of 479 subjects with the presence or absence of flu-like symptoms were obtained using proton-transfer-reaction time-of-flight mass spectrometry. Among 223 individuals, one respiratory pathogen was detected in 171 cases, and more than one pathogen in 52 cases. A total of 256 subjects had negative PCR test results and had no symptoms. The exhaled VOC profiles were affected by the presence of Haemophilus influenzae, Streptococcus pneumoniae, and Rhinovirus. The endogenous ketone, short-chain fatty acid, organosulfur, aldehyde, and terpene concentrations changed, but only a few compounds exhibited concentration changes above inter-individual physiological variations. Based on the VOC origins, the observed concentration changes may be attributed to oxidative stress and antioxidative defense, energy metabolism, systemic microbial immune homeostasis, and inflammation. In contrast to previous studies with pre-selected patient groups, the results of this study demonstrate the broad inter-individual variations in VOC profiles in real-life screening conditions. As no unique infection markers exist, only concentration changes clearly above the mentioned variations can be regarded as indicative of infection or colonization.

2.
STAR Protoc ; 5(1): 102808, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38170664

ABSTRACT

Here, we present a protocol for using Early Data Visualization Script, a user-friendly software tool to visualize complex volatile metabolomics data in clinical setups. We describe steps for tabulating data and adjusting visual output to visualize complex time-resolved volatile omics data using simple charts and graphs. We then demonstrate possible modifications by detailing procedures for the adaptation of four basic functions. For complete details on the use and execution of this protocol, please refer to Sukul et al. (2022)1 and Remy et al. (2022).2.


Subject(s)
Data Visualization , Metabolomics , Software
3.
Sci Rep ; 12(1): 17926, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36289276

ABSTRACT

Being the proximal matrix, breath offers immediate metabolic outlook of respiratory infections. However, high viral load in exhalations imposes higher transmission risk that needs improved methods for safe and repeatable analysis. Here, we have advanced the state-of-the-art methods for real-time and offline mass-spectrometry based analysis of exhaled volatile organic compounds (VOCs) under SARS-CoV-2 and/or similar respiratory conditions. To reduce infection risk, the general experimental setups for direct and offline breath sampling are modified. Certain mainstream and side-stream viral filters are examined for direct and lab-based applications. Confounders/contributions from filters and optimum operational conditions are assessed. We observed immediate effects of infection safety mandates on breath biomarker profiles. Main-stream filters induced physiological and analytical effects. Side-stream filters caused only systematic analytical effects. Observed substance specific effects partly depended on compound's origin and properties, sampling flow and respiratory rate. For offline samples, storage time, -conditions and -temperature were crucial. Our methods provided repeatable conditions for point-of-care and lab-based breath analysis with low risk of disease transmission. Besides breath VOCs profiling in spontaneously breathing subjects at the screening scenario of COVID-19/similar test centres, our methods and protocols are applicable for moderately/severely ill (even mechanically-ventilated) and highly contagious patients at the intensive care.


Subject(s)
COVID-19 , Volatile Organic Compounds , Humans , Volatile Organic Compounds/analysis , COVID-19/diagnosis , SARS-CoV-2 , Breath Tests/methods , Exhalation , Biomarkers/analysis , Monitoring, Physiologic
4.
iScience ; 25(10): 105195, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36168390

ABSTRACT

Breath volatile organics (VOCs) may provide immediate information on infection mechanisms and host response. We conducted real-time mass spectrometry-based breath profiling in 708 non-preselected consecutive subjects in the screening scenario of a COVID-19 test center. Recruited subjects were grouped based on PCR-confirmed infection status and presence or absence of flu-like symptoms. Exhaled VOC profiles of SARS-CoV-2-positive cases (n = 36) differed from healthy (n = 256) and those with other respiratory infections (n = 416). Concentrations of most VOCs were suppressed in COVID-19. VOC concentrations also differed between symptomatic and asymptomatic cases. Breath markers mirror effects of infections onto host's cellular metabolism and microbiome. Downregulation of specific VOCs was attributed to suppressive effects of SARS-CoV-2 onto gut or pulmonary microbial metabolism. Breath analysis holds potential for monitoring SARS-CoV-2 infections rather than for primary diagnosis. Breath profiling offers unconventional insight into host-virus cross-talk and infection microbiology and enables non-invasive assessment of disease manifestation.

5.
Front Physiol ; 13: 946401, 2022.
Article in English | MEDLINE | ID: mdl-36035465

ABSTRACT

Breath analysis was coupled with ergo-spirometry for non-invasive profiling of physio-metabolic status under exhaustive exercise. Real-time mass-spectrometry based continuous analysis of exhaled metabolites along with breath-resolved spirometry and heart rate monitoring were executed while 14 healthy adults performed ergometric ramp exercise protocol until exhaustion. Arterial blood lactate level was analyzed at defined time points. Respiratory-cardiac parameters and exhalation of several blood-borne volatiles changed continuously with the course of exercise and increasing workloads. Exhaled volatiles mirrored ventilatory and/or hemodynamic effects and depended on the origin and/or physicochemical properties of the substances. At the maximum workload, endogenous isoprene, methanethiol, dimethylsulfide, acetaldehyde, butanal, butyric acid and acetone concentrations decreased significantly by 74, 25, 35, 46, 21, 2 and 2%, respectively. Observed trends in exogenous cyclohexadiene and acetonitrile mimicked isoprene profile due to their similar solubility and volatility. Assignment of anaerobic threshold was possible via breath acetone. Breathomics enabled instant profiling of physio-metabolic effects and anaerobic thresholds during exercise. Profiles of exhaled volatiles indicated effects from muscular vasoconstriction, compartmental distribution of perfusion, extra-alveolar gas-exchange and energy homeostasis. Sulfur containing compounds and butyric acid turned out to be interesting for investigations of combined diet and exercise programs. Reproducible metabolic breath patterns have enhanced scopes of breathomics in sports science/medicine.

6.
Metabolites ; 12(6)2022 May 31.
Article in English | MEDLINE | ID: mdl-35736436

ABSTRACT

Regional anaesthesia is well established as a standard method in clinical practice. Currently, the local anaesthetics of amino-amide types such as prilocaine are frequently used. Despite routine use, complications due to overdose or accidental intravenous injection can arise. A non-invasive method that can indicate such complications early would be desirable. Breath gas analysis offers great potential for the non-invasive monitoring of drugs and their volatile metabolites. The physicochemical properties of o-toluidine, the main metabolite of prilocaine, allow its detection in breath gas. Within this study, we investigated whether o-toluidine can be monitored in exhaled breath during regional anaesthesia in an animal model, if correlations between o-toluidine and prilocaine blood levels exist and if accidental intravenous injections are detectable by o-toluidine breath monitoring. Continuous o-toluidine monitoring was possible during regional anaesthesia of the cervical plexus and during simulated accidental intravenous injection of prilocaine. The time course of exhaled o-toluidine concentrations considerably differed depending on the injection site. Intravenous injection led to an immediate increase in exhaled o-toluidine concentrations within 2 min, earlier peak and higher maximum concentrations, followed by a faster decay compared to regional anaesthesia. The strength of correlation of blood and breath parameters depended on the injection site. In conclusion, real time monitoring of o-toluidine in breath gas is possible by means of PTR-ToF-MS. Since simulated accidental intravenous injection led to an immediate increase in exhaled o-toluidine concentrations within 2 min and higher maximum concentrations, monitoring exhaled o-toluidine may potentially be applied for the non-invasive real-time detection of accidental intravenous injection of prilocaine.

7.
iScience ; 25(2): 103739, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35141500

ABSTRACT

Healthy aging driven physio-metabolic events in females hold the key to complex in vivo mechanistic links and systemic cross talks. Effects from basic changes at genome, proteome, metabolome, and lipidome levels are often reflected at the upstream phenome (e.g., breath volatome) cascades. Here, we have analyzed exhaled volatile metabolites (measured via real time mass spectrometry based breathomics) data from 204 healthy females, aged between 07 and 80 years. Age related substance-specific differences were observed in breath biomarkers. Exhalation of blood-borne endogenous organosulfur, short-chain fatty acids, alcohols, aldehydes, alkene, ketones and exogenous nitriles, terpenes, and aromatics have denominated interplay between endocrine differences, energy homeostasis, systemic microbial diversity, oxidative stress, and lifestyle. Overall marker expressions were suppressed under daily oral contraception. Young homosexual/lesbian adults turned out as breathomic outliers. Previously proposed disease-specific breath biomarkers should be reevaluated upon aging effects. Breathomics offers a noninvasive window toward system-wide understanding and personalized monitoring of aging i.e., translatable to gerontology.

8.
Eur Respir J ; 60(3)2022 09.
Article in English | MEDLINE | ID: mdl-35169028

ABSTRACT

BACKGROUND: While assumed to protect against coronavirus transmission, face masks may have effects on respiratory-haemodynamic parameters. Within this pilot study, we investigated immediate and progressive effects of FFP2 and surgical masks on exhaled breath constituents and physiological attributes in 30 adults at rest. METHODS: We continuously monitored exhaled breath profiles within mask space in older (age 60-80 years) and young to middle-aged (age 20-59 years) adults over the period of 15 and 30 min by high-resolution real-time mass-spectrometry. Peripheral oxygen saturation (S pO2 ) and respiratory and haemodynamic parameters were measured (noninvasively) simultaneously. RESULTS: Profound, consistent and significant (p≤0.001) changes in S pO2 (≥60_FFP2-15 min: 5.8±1.3%↓, ≥60_surgical-15 min: 3.6±0.9%↓, <60_FFP2-30 min: 1.9±1.0%↓, <60_surgical-30 min: 0.9±0.6%↓) and end-tidal carbon dioxide tension (P ETCO2 ) (≥60_FFP2-15 min: 19.1±8.0%↑, ≥60_surgical-15 min: 11.6±7.6%↑, <60_FFP2- 30 min: 12.1±4.5%↑, <60_surgical- 30 min: 9.3±4.1%↑) indicate ascending deoxygenation and hypercarbia. Secondary changes (p≤0.005) to haemodynamic parameters (e.g. mean arterial pressure (MAP) ≥60_FFP2-15 min: 9.8±10.4%↑) were found. Exhalation of bloodborne volatile metabolites, e.g. aldehydes, hemiterpene, organosulfur, short-chain fatty acids, alcohols, ketone, aromatics, nitrile and monoterpene mirrored behaviour of cardiac output, MAP, S pO2 , respiratory rate and P ETCO2 . Exhaled humidity (e.g. ≥60_FFP2-15 min: 7.1±5.8%↑) and exhaled oxygen (e.g. ≥60_FFP2-15 min: 6.1±10.0%↓) changed significantly (p≤0.005) over time. CONCLUSIONS: Breathomics allows unique physiometabolic insights into immediate and transient effects of face mask wearing. Physiological parameters and breath profiles of endogenous and/or exogenous volatile metabolites indicated putative cross-talk between transient hypoxaemia, oxidative stress, hypercarbia, vasoconstriction, altered systemic microbial activity, energy homeostasis, compartmental storage and washout. FFP2 masks had a more pronounced effect than surgical masks. Older adults were more vulnerable to FFP2 mask-induced hypercarbia, arterial oxygen decline, blood pressure fluctuations and concomitant physiological and metabolic effects.


Subject(s)
COVID-19 , Exhalation , Adult , Aged , Aged, 80 and over , Alcohols , Aldehydes , Carbon Dioxide/metabolism , Hemiterpenes , Hemodynamics , Humans , Ketones , Masks , Middle Aged , Monoterpenes , Nitriles , Oxygen , Pilot Projects , Young Adult
9.
Front Vet Sci ; 8: 620327, 2021.
Article in English | MEDLINE | ID: mdl-33614764

ABSTRACT

Analysis of volatile organic compounds (VOCs) is a novel approach to accelerate bacterial culture diagnostics of Mycobacterium avium subsp. paratuberculosis (MAP). In the present study, cultures of fecal and tissue samples from MAP-infected and non-suspect dairy cattle and goats were explored to elucidate the effects of sample matrix and of animal species on VOC emissions during bacterial cultivation and to identify early markers for bacterial growth. The samples were processed following standard laboratory procedures, culture tubes were incubated for different time periods. Headspace volume of the tubes was sampled by needle trap-micro-extraction, and analyzed by gas chromatography-mass spectrometry. Analysis of MAP-specific VOC emissions considered potential characteristic VOC patterns. To address variation of the patterns, a flexible and robust machine learning workflow was set up, based on random forest classifiers, and comprising three steps: variable selection, parameter optimization, and classification. Only a few substances originated either from a certain matrix or could be assigned to one animal species. These additional emissions were not considered informative by the variable selection procedure. Classification accuracy of MAP-positive and negative cultures of bovine feces was 0.98 and of caprine feces 0.88, respectively. Six compounds indicating MAP presence were selected in all four settings (cattle vs. goat, feces vs. tissue): 2-Methyl-1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol, heptanal, isoprene, and 2-heptanone. Classification accuracies for MAP growth-scores ranged from 0.82 for goat tissue to 0.89 for cattle feces. Misclassification occurred predominantly between related scores. Seventeen compounds indicating MAP growth were selected in all four settings, including the 6 compounds indicating MAP presence. The concentration levels of 2,3,5-trimethylfuran, 2-pentylfuran, 1-propanol, and 1-hexanol were indicative for MAP cultures before visible growth was apparent. Thus, very accurate classification of the VOC samples was achieved and the potential of VOC analysis to detect bacterial growth before colonies become visible was confirmed. These results indicate that diagnosis of paratuberculosis can be optimized by monitoring VOC emissions of bacterial cultures. Further validation studies are needed to increase the robustness of indicative VOC patterns for early MAP growth as a pre-requisite for the development of VOC-based diagnostic analysis systems.

10.
Sci Rep ; 10(1): 14109, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32839494

ABSTRACT

Control of breathing is automatic and its regulation is keen to autonomic functions. Therefore, involuntary and voluntary nervous regulation of breathing affects ventilatory variations, which has profound potential to address expanding challenges in contemporary pulmonology. Nonetheless, the fundamental attributes of the aforementioned phenomena are rarely understood and/or investigated. Implementation of unconventional approach like breathomics may leads to a better comprehension of those complexities in respiratory medicine. We applied breath-resolved spirometry and capnometry, non-invasive hemodynamic monitoring along with continuous trace analysis of exhaled VOCs (volatile organic compounds) by means of real-time mass-spectrometry in 25 young and healthy adult humans to investigate any possible mirroring of instant ventilatory variations by exhaled breath composition, under varying respiratory rhythms. Hemodynamics remained unaffected. Immediate changes in measured breath compositions and corresponding variations occurred when respiratory rhythms were switched between spontaneous (involuntary/unsynchronised) and/or paced (voluntary/synchronised) breathing. Such changes in most abundant, endogenous and bloodborne VOCs were closely related to the minute ventilation and end-tidal CO2 exhalation. Unprecedentedly, while preceded by a paced rhythm, spontaneous rhythms in both independent setups became reproducible with significantly (P-value ≤ 0.005) low intra- and inter-individual variation in measured parameters. We modelled breath-resolved ventilatory variations via alveolar isoprene exhalation, which were independently validated with unequivocal precision. Reproducibility i.e. attained via our method would be reliable for human breath sampling, concerning biomarker research. Thus, we may realize the actual metabolic and pathophysiological expressions beyond the everlasting in vivo physiological noise. Consequently, less pronounced changes are often misinterpreted as disease biomarker in cross-sectional studies. We have also provided novel information beyond conventional spirometry and capnometry. Upon clinical translations, our findings will have immense impact on pulmonology and breathomics as they have revealed a reproducible pattern of ventilatory variations and respiratory homeostasis in endogenous VOC exhalations.


Subject(s)
Breath Tests/methods , Carbon Dioxide/analysis , Exhalation/physiology , Respiration , Volatile Organic Compounds/analysis , Adult , Blood Gas Monitoring, Transcutaneous/methods , Female , Hemodynamics/physiology , Humans , Inhalation/physiology , Male , Mass Spectrometry , Middle Aged , Pulmonary Medicine , Spirometry/methods , Young Adult
11.
Anal Bioanal Chem ; 412(26): 7131-7140, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32794005

ABSTRACT

Proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) is a powerful tool for real-time monitoring of trace concentrations of volatile organic compounds (VOCs). The sensitivity of PTR-ToF-MS also depends on the ability to effectively focus and transmit ions from the relatively high-pressure drift tube (DT) to the low-pressure mass analyzer. In the present study, a modular ion-funnel (IF) is placed adjacent to the DT of a PTR-ToF-MS instrument to improve the ion-focusing. IF consists of a series of electrodes with gradually decreasing orifice diameters. Radio frequency (RF) voltage and direct current (DC) electric field are then applied to the electrodes to get the ions focused. We investigated the effect of the RF voltage and DC field on the sensitivity of a pattern of VOCs including hydrocarbons, alcohols, aldehydes, ketones, and aromatic compounds. In a proof-of-concept study, the instrument operating both as normal DT (DC-mode) and at optimal IF conditions (RF-mode) was applied for the breath analysis of 21 healthy human subjects. For the range of investigated VOCs, an improvement of one order of magnitude in sensitivity was observed in RF-mode compared with DC-mode. Limits of detection could be improved by a factor of 2-4 in RF-mode compared with DC-mode. Operating the instrument in RF-mode allowed the detection of more compounds in the exhaled air compared with DC-mode. Incorporation of the IF considerably improved the performance of PTR-ToF-MS allowing the real-time monitoring of a larger number of potential breath biomarkers. Graphical abstract.


Subject(s)
Breath Tests , Mass Spectrometry/methods , Volatile Organic Compounds/analysis , Adult , Female , Humans , Ions , Limit of Detection , Male , Middle Aged , Proof of Concept Study , Young Adult
12.
Metabolites ; 10(8)2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32784730

ABSTRACT

Assessment and treatment of postoperative pain can be challenging as objective examination techniques to detect and quantify pain are lacking. We aimed to investigate changes of exhaled volatile organic compounds (VOCs) in patients with postoperative pain before and after treatment with opioid analgesics. In an observational study in 20 postoperative patients, we monitored for postoperative pain, hemodynamic parameters, and catecholamines before and during treatment. VOCs in the patients were determined by direct real-time proton transfer reaction time-of-flight mass spectrometry prior (0 min) and after piritramide application (15 min as well as 30 min). Cardiovascular variables changed and norepinephrine levels decreased during treatment. The VOCs acetonitrile (<0.001), acetaldehyde (p = 0.002), benzopyran (p = 0.004), benzene (p < 0.001), hexenal (p = < 0.001), 1-butanethiol (p = 0.004), methanethiol (p < 0.001), ethanol (p = 0.003), and propanol (p = < 0.001) changed significantly over time. Patients with Numeric Rating Scale (NRS) < 4 showed a significantly lower concentration of hexenal compared to patients with NRS > 4 at the time points 15 min (45.0 vs. 385.3 ncps, p = 0.047) and 30 min (38.3 vs. 334.6 ncps, p = 0.039). Breath analysis can provide additional information for noninvasive monitoring for analgesic treatment in postoperative patients.

13.
Sci Rep ; 10(1): 1734, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31992815

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Sci Rep ; 9(1): 15707, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31673076

ABSTRACT

Monitoring metabolic adaptation to type 1 diabetes mellitus in children is challenging. Analysis of volatile organic compounds (VOCs) in exhaled breath is non-invasive and appears as a promising tool. However, data on breath VOC profiles in pediatric patients are limited. We conducted a cross-sectional study and applied quantitative analysis of exhaled VOCs in children suffering from type 1 diabetes mellitus (T1DM) (n = 53) and healthy controls (n = 60). Both groups were matched for sex and age. For breath gas analysis, a very sensitive direct mass spectrometric technique (PTR-TOF) was applied. The duration of disease, the mode of insulin application (continuous subcutaneous insulin infusion vs. multiple daily insulin injection) and long-term metabolic control were considered as classifiers in patients. The concentration of exhaled VOCs differed between T1DM patients and healthy children. In particular, T1DM patients exhaled significantly higher amounts of ethanol, isopropanol, dimethylsulfid, isoprene and pentanal compared to healthy controls (171, 1223, 19.6, 112 and 13.5 ppbV vs. 82.4, 784, 11.3, 49.6, and 5.30 ppbV). The most remarkable differences in concentrations were found in patients with poor metabolic control, i.e. those with a mean HbA1c above 8%. In conclusion, non-invasive breath testing may support the discovery of basic metabolic mechanisms and adaptation early in the progress of T1DM.


Subject(s)
Breath Tests , Diabetes Mellitus, Type 1/metabolism , Volatile Organic Compounds/analysis , Adolescent , Case-Control Studies , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Male
15.
J Clin Med ; 8(11)2019 Oct 26.
Article in English | MEDLINE | ID: mdl-31717811

ABSTRACT

An analysis of exhaled volatile organic compounds (VOC) may deliver systemic information quicker than available invasive techniques. Metabolic aberrations in pediatric type 1 diabetes (T1DM) are of high clinical importance and could be addressed via breathomics. Real-time breath analysis was combined with continuous glucose monitoring (CGM) and blood tests in children suffering from T1DM and age-matched healthy controls in a highly standardized setting. CGM and breath-resolved VOC analysis were performed every 5 minutes for 9 hours and blood was sampled at pre-defined time points. Per participant (n = 44) food intake and physical activity were identical and a total of 22 blood samples and 93 minutes of breath samples were investigated. The inter-individual variability of glucose, insulin, glucagon, leptin, and soluble leptin receptor relative to food intake differed distinctly between patients and controls. In T1DM patients, the exhaled amounts of acetone, 2-propanol, and pentanal correlated to glucose concentrations. Of note, the strength of these correlations strongly depended on the interval between food intake and breath sampling. Our data suggests that metabolic adaptation through postprandial hyperglycemia and related oxidative stress is immediately reflected in exhaled breath VOC concentrations. Clinical translations of our findings may enable point-of-care applicability of online breath analysis towards personalized medicine.

16.
Analyst ; 144(24): 7359-7367, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31663533

ABSTRACT

Reactive exhaled volatile organic compounds (VOCs) such as nitrogen- and sulfur-containing substances may be related to diseases, metabolic processes and bacterial activity. As these compounds may interact with any surface of the analytical system, time-resolved monitoring and reliable quantification is difficult. We describe a proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) based analytical method for direct breath-resolved monitoring of reactive compounds. Aliphatic amines were used as test substances. Matrix adapted gas standards were generated by means of a liquid calibration unit. Calibration conditions were adapted in terms of materials, temperature and equilibration time. PTR-ToF-MS conditions were optimized in terms of inlet materials, transfer line and drift tube temperature and drift tube reduced electric field (E/N). Optimized PTR conditions in combination with inert materials and high temperatures considerably reduced the interactions of compounds with the surfaces of the analytical system. Good linearity (R2 > 0.99, RSDs < 5%) with LODs between 0.15 ppbV and 1.23 ppbV and LOQs between 0.24 ppbV and 1.94 ppbV could be achieved. The method was then applied to breath-resolved monitoring of reactive compounds in 17 healthy subjects after high and low oral protein challenge. Exhaled concentrations of trimethylamine, indole, methanethiol, dimethylsulfide, acetone, 2-propanol, 2-butanone and phenol showed significant changes after protein intake. Methanethiol concentrations increased 6-fold within minutes after the protein intake. Optimization of methods and instrument design enabled reliable breath-resolved PTR-MS based analysis of exhaled reactive VOCs in the sub-ppbV range. Continuous in vivo monitoring of exhaled amines and sulphur containing compounds may provide novel non-invasive insight into endogenous and gut bacteria driven protein metabolism.


Subject(s)
Breath Tests/methods , Mass Spectrometry/methods , Volatile Organic Compounds/analysis , Adult , Diet, High-Protein , Diet, Protein-Restricted , Female , Humans , Limit of Detection , Male , Middle Aged , Proof of Concept Study , Young Adult
17.
PLoS One ; 14(8): e0221031, 2019.
Article in English | MEDLINE | ID: mdl-31415617

ABSTRACT

Analysis of volatile organic compounds (VOC) derived from bacterial metabolism during cultivation is considered an innovative approach to accelerate in vitro detection of slowly growing bacteria. This applies also to Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of paratuberculosis, a debilitating chronic enteritis of ruminants. Diagnostic application demands robust VOC profiles that are reproducible under variable culture conditions. In this study, the VOC patterns of pure bacterial cultures, derived from three independent in vitro studies performed previously, were comparatively analyzed. Different statistical analyses were linked to extract the VOC core profile of MAP and to prove its robustness, which is a prerequisite for further development towards diagnostic application. Despite methodical variability of bacterial cultivation and sample pre-extraction, a common profile of 28 VOCs indicating cultural growth of MAP was defined. The substances cover six chemical classes. Four of the substances decreased above MAP and 24 increased. Random forest classification was applied to rank the compounds relative to their importance and for classification of MAP versus control samples. Already the top-ranked compound alone achieved high discrimination (AUC 0.85), which was further increased utilizing all compounds of the VOC core profile of MAP (AUC 0.91). The discriminatory power of this tool for the characterization of natural diagnostic samples, in particular its diagnostic specificity for MAP, has to be confirmed in future studies.


Subject(s)
Mycobacterium avium subsp. paratuberculosis/growth & development , Paratuberculosis/metabolism , Ruminants/microbiology , Volatile Organic Compounds/metabolism , Animals , Paratuberculosis/diagnosis , Paratuberculosis/microbiology , Volatile Organic Compounds/analysis
18.
J Breath Res ; 13(4): 046004, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31185457

ABSTRACT

Proton-transfer-reaction-time-of-flight-mass-spectrometry (PTR-ToF-MS) is a powerful tool for real-time monitoring of volatile organic compound (VOC) profiles in human breath. However, varying oxygen concentrations in the sample matrix may influence results from VOC analysis by PTR-ToF-MS. Elevated oxygen concentrations are likely to occur in clinical settings, but also when respiratory masks or breathing apparatus are used (e.g. in scuba diving, aviation, firefighting). Oxygen concentration may vary between subjects or within the course of a measurement or study and thus bias results. We systematically assessed the effect of high O2 concentrations (up to 90%) in the sample matrix on the results of PTR-MS analysis for a pattern of VOCs including aromatics, aldehydes and ketones in dry and humid samples. In vivo experiments in healthy volunteers and mechanically ventilated animals were done to test the effect under real-life conditions. H3O+ count significantly decreased by more than 40% when the amount of oxygen in the sample matrix was increased. Almost all investigated VOCs were significantly effected by varying oxygen concentrations and differences in signal intensities of more than 50% could be observed. The effect was generally more pronounced in dry samples but still significant under humid conditions. A linear dependency of sensitivity on the oxygen concentration in the sample matrix was observed for a number of VOCs (e.g. aldehydes) possibly enabling a factor based correction. VOC intensities were also influenced under in vivo conditions, e.g. ethanol decreased up to 71%. When PTR-MS analysis is carried out under oxygen supply, these issues need to be carefully considered.


Subject(s)
Mass Spectrometry/methods , Oxygen/pharmacology , Protons , Volatile Organic Compounds/analysis , Adult , Animals , Breath Tests/methods , Humans , Respiration, Artificial , Swine , Water
19.
Sci Rep ; 8(1): 14857, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30291257

ABSTRACT

Influenza is one of the most common causes of virus diseases worldwide. Virus detection requires determination of Influenza RNA in the upper respiratory tract. Efficient screening is not possible in this way. Analysis of volatile organic compounds (VOCs) in breath holds promise for non-invasive and fast monitoring of disease progression. Breath VOC profiles of 14 (3 controls and 11 infected animals) swine were repeatedly analyzed during a complete infection cycle of Influenza A under high safety conditions. Breath VOCs were pre-concentrated by means of needle trap micro-extraction and analysed by gas chromatography mass spectrometry before infection, during virus presence in the nasal cavity, and after recovery. Six VOCs could be related to disease progression: acetaldehyde, propanal, n-propyl acetate, methyl methacrylate, styrene and 1,1-dipropoxypropane. As early as on day four after inoculation, when animals were tested positive for Influenza A, differentiation between control and infected animals was possible. VOC based information on virus infection could enable early detection of Influenza A. As VOC analysis is completely non-invasive it has potential for large scale screening purposes. In a perspective, breath analysis may offer a novel tool for Influenza monitoring in human medicine, animal health control or border protection.


Subject(s)
Breath Tests/instrumentation , Influenza A virus/isolation & purification , Orthomyxoviridae Infections/veterinary , Swine Diseases/diagnosis , Swine/virology , Volatile Organic Compounds/analysis , Animals , Equipment Design , Orthomyxoviridae Infections/diagnosis , Respiration , Swine Diseases/virology
20.
Sci Rep ; 8(1): 10838, 2018 Jul 18.
Article in English | MEDLINE | ID: mdl-30022081

ABSTRACT

Natural menstrual cycle and/or oral contraception diversely affect women metabolites. Longitudinal metabolic profiling under constant experimental conditions is thereby realistic to understand such effects. Thus, we investigated volatile organic compounds (VOCs) exhalation throughout menstrual cycles in 24 young and healthy women with- and without oral contraception. Exhaled VOCs were identified and quantified in trace concentrations via high-resolution real-time mass-spectrometry, starting from a menstruation and then repeated follow-up with six intervals including the next bleeding. Repeated measurements within biologically comparable groups were employed under optimized measurement setup. We observed pronounced and substance specific changes in exhaled VOC concentrations throughout all cycles with low intra-individual variations. Certain blood-borne volatiles changed significantly during follicular and luteal phases. Most prominent changes in endogenous VOCs were observed at the ovulation phase with respect to initial menstruation. Here, the absolute median abundances of alveolar ammonia, acetone, isoprene and dimethyl sulphide changed significantly (P-value ≤ 0.005) by 18.22↓, 13.41↓, 18.02↑ and 9.40↓%, respectively. These VOCs behaved in contrast under the presence of combined oral contraception; e.g. isoprene decreased significantly by 30.25↓%. All changes returned to initial range once the second bleeding phase was repeated. Changes in exogenous benzene, isopropanol, limonene etc. and smoking related furan, acetonitrile and orally originated hydrogen sulphide were rather nonspecific and mainly exposure dependent. Our observations could apprehend a number of known/pre-investigated metabolic effects induced by monthly endocrine regulations. Potential in vivo origins (e.g. metabolic processes) of VOCs are crucial to realize such effects. Despite ubiquitous confounders, we demonstrated the true strength of volatolomics for metabolic monitoring of menstrual cycle and contraceptives. These outcomes may warrant further studies in this direction to enhance our fundamental and clinical understanding on menstrual metabolomics and endocrinology. Counter-effects of contraception can be deployed for future noninvasive assessment of birth control pills. Our findings could be translated toward metabolomics of pregnancy, menopause and post-menopausal complications via breath analysis.


Subject(s)
Contraception/methods , Contraceptives, Oral/administration & dosage , Exhalation/physiology , Menstruation/physiology , Volatile Organic Compounds/analysis , Adolescent , Adult , Breath Tests , Female , Humans , Middle Aged , Respiratory Physiological Phenomena , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...