Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Sci Ecotechnol ; 16: 100261, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37089695

ABSTRACT

The industrial adoption of microbial electrosynthesis (MES) is hindered by high overpotentials deriving from low electrolyte conductivity and inefficient cell designs. In this study, a mixed microbial consortium originating from an anaerobic digester operated under saline conditions (∼13 g L-1 NaCl) was adapted for acetate production from bicarbonate in galvanostatic (0.25 mA cm-2) H-type cells at 5, 10, 15, or 20 g L-1 NaCl concentration. The acetogenic communities were successfully enriched only at 5 and 10 g L-1 NaCl, revealing an inhibitory threshold of about 6 g L-1 Na+. The enriched planktonic communities were then used as inoculum for 3D printed, three-chamber cells equipped with a gas diffusion biocathode. The cells were fed with CO2 gas and operated galvanostatically (0.25 or 1.00 mA cm-2). The highest production rate of 55.4 g m-2 d-1 (0.89 g L-1 d-1), with 82.4% Coulombic efficiency, was obtained at 5 g L-1 NaCl concentration and 1 mA cm-2 applied current, achieving an average acetate production of 44.7 kg MWh-1. Scanning electron microscopy and 16S rRNA sequencing analysis confirmed the formation of a cathodic biofilm dominated by Acetobacterium sp. Finally, three 3D printed cells were hydraulically connected in series to simulate an MES stack, achieving three-fold production rates than with the single cell at 0.25 mA cm-2. This confirms that three-chamber MES cells are an efficient and scalable technology for CO2 bio-electro recycling to acetate and that moderate saline conditions (5 g L-1 NaCl) can help reduce their power demand while preserving the activity of acetogens.

2.
Microorganisms ; 10(10)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36296237

ABSTRACT

Understanding microbial ecology through amplifying short read regions, typically 16S rRNA for prokaryotic species or 18S rRNA for eukaryotic species, remains a popular, economical choice. These methods provide relative abundances of key microbial taxa, which, depending on the experimental design, can be used to infer mechanistic ecological underpinnings. In this review, we discuss recent advancements in in situ analytical tools that have the power to elucidate ecological phenomena, unveil the metabolic potential of microbial communities, identify complex multidimensional interactions between species, and compare stability and complexity under different conditions. Additionally, we highlight methods that incorporate various modalities and additional information, which in combination with abundance data, can help us understand how microbial communities respond to change in a typical ecosystem. Whilst the field of microbial informatics continues to progress substantially, our emphasis is on popular methods that are applicable to a broad range of study designs. The application of these methods can increase our mechanistic understanding of the ongoing dynamics of complex microbial communities.

3.
Microbiol Spectr ; 9(3): e0078421, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34756083

ABSTRACT

The formation of dense, well-settling methanogenic granules is essential for the operation of high-rate, up-flow anaerobic bioreactors used for wastewater treatment. Granule formation (granulation) mechanisms have been previously proposed, but an ecological understanding of granule formation is still lacking. Additionally, much of the current research on granulation only examines the start-up phase of bioreactor operation, rather than monitoring the fate of established granules and how new granules emerge over time. This paper, therefore, attempts to provide an insight into the microbial ecology of granule formation outside the start-up phase of bioreactor operation and develop an ecological granulation model. The microbial communities of granules actively undergoing growth, breakage, and reformation were examined, and an ecological granulation model was proposed. A distinct pregranular microbial community, with a high proportion of acidogenic organisms, such as the Streptococcaceae, was identified and suggested to have a role in initiating granulation by providing simpler substrates for the methanogenic and syntrophic communities which developed during granule growth. After initial granule formation, deterministic influences on microbial community assembly increased with granule size and indicated that microbial community succession was influenced by granule growth, leading to the formation of a stepwise ecological model for granulation. IMPORTANCE Complex microbial communities in engineered environments can aggregate to form surface-attached biofilms. Others form suspended biofilms, such as methanogenic granules. The formation of dense, methanogenic granules underpins the performance of high-rate, anaerobic bioreactors in industrial wastewater treatment. Granule formation (granulation) has been well studied from a physico-chemical perspective, but the ecological basis is poorly understood. We identified a distinct, flocculent, microbial community, which was present alongside granules, comprising primary consumers likely key in providing simpler substrates to granules. This flocculent community is understudied in anaerobic digestion and may initiate, or perpetuate, granule formation. We propose that it may be possible to influence bioreactor performance (e.g., to regulate volatile fatty acid concentrations) by manipulating this community. The patterns of microbial community diversity and assembly revealed by the study indicate that cycles of granule growth and breakage lead to overall diversification of the bioreactor meta-community, with implications for bioreactor process stability.


Subject(s)
Bacteria, Anaerobic/metabolism , Bioreactors/microbiology , Methane/biosynthesis , Microbiota/physiology , Sewage/microbiology , Bacterial Adhesion/physiology , Biofilms/growth & development , Flocculation , Streptococcaceae/metabolism , Water Purification
4.
Bioresour Technol ; 341: 125786, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34523560

ABSTRACT

Municipal wastewater constitutes the largest fraction of wastewater, and yet treatment processes are largely removal-based. High-rate anaerobic digestion (AD) has revolutionised the sustainability of industrial wastewater treatment and could additionally provide an alternative for municipal wastewater. While AD of dilute municipal wastewater is common in tropical regions, the low temperatures of temperate climates has resulted in slow uptake. Here, we demonstrate for the first time, direct, high-rate, low-temperature AD of low-strength municipal wastewater at full-scale. An 88 m3 hybrid reactor was installed at the municipal wastewater treatment plant in Builth Wells, UK and operated for 290 days. Ambient temperatures ranged from 2 to 18 °C, but remained below 15 °C for > 100 days. Influent BOD fluctuated between 2 and 200 mg L-1. However, BOD removal often reached > 85%. 16S rRNA amplicon sequencing of DNA from the biomass revealed a highly adaptable core microbiome. These findings could provide the basis for the next-generation of municipal wastewater treatment.


Subject(s)
Waste Disposal, Fluid , Wastewater , Anaerobiosis , Bioreactors , RNA, Ribosomal, 16S/genetics , Sewage , Temperature
5.
Front Microbiol ; 12: 666584, 2021.
Article in English | MEDLINE | ID: mdl-34054772

ABSTRACT

Advances in null-model approaches have resulted in a deeper understanding of community assembly mechanisms for a variety of complex microbiomes. One under-explored application is assembly of communities from the built-environment, especially during process disturbances. Anaerobic digestion for biological wastewater treatment is often underpinned by retaining millions of active granular biofilm aggregates. Flotation of granules is a major problem, resulting in process failure. Anaerobic aggregates were sampled from three identical bioreactors treating dairy wastewater. Microbiome structure was analysed using qPCR and 16S rRNA gene amplicon sequencing from DNA and cDNA. A comprehensive null-model approach quantified assembly mechanisms of floating and settled communities. Significant differences in diversity were observed between floating and settled granules, in particular, we highlight the changing abundances of Methanosaeta and Lactococcus. Both stochastic and deterministic processes were important for community assembly. Homogeneous selection was the primary mechanism for all categories, but dispersal processes also contributed. The lottery model was used to identify clade-level competition driving community assembly. Lottery "winners" were identified with different winners between floating and settled groups. Some groups changed their winner status when flotation occurred. Spirochaetaceae, for example, was only a winner in settled biomass (cDNA-level) and lost its winner status during flotation. Alternatively, Arcobacter butzerli gained winner status during flotation. This analysis provides a deeper understanding of changes that occur during process instabilities and identified groups which may be washed out-an important consideration for process control.

6.
J Environ Manage ; 286: 112229, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33667821

ABSTRACT

Up-flow anaerobic bioreactors are widely applied for high-rate digestion of industrial wastewaters and rely on formation, and retention, of methanogenic granules, comprising of dense, fast-settling, microbial aggregates (approx. 0.5-4.0 mm in diameter). Granule formation (granulation) mechanisms have been reasonably well hypothesized and documented. However, this study used laboratory-scale bioreactors, inoculated with size-separated granular sludge to follow new granule formation, maturation, disintegration and re-formation. Temporal size profiles, volatile solids content, settling velocity, and ultrastructure of granules were determined from each of four bioreactors inoculated only with small granules, four with only large granules, and four with a full complement of naturally-size-distributed granules. Constrained granule size profiles shifted toward the natural distribution, which was associated with maximal bioreactor performance. Distinct morphological features characterized different granule sizes and biofilm development stages, including 'young', 'juvenile', 'mature' and 'old'. The findings offer opportunities toward optimizing management of high-rate, anaerobic digesters by shedding light on the rates of granule growth, the role of flocculent sludge in granulation and how shifting size distributions should be considered when setting upflow velocities.


Subject(s)
Euryarchaeota , Waste Disposal, Fluid , Anaerobiosis , Bioreactors , Growth and Development , Sewage
7.
mSystems ; 5(5)2020 09 29.
Article in English | MEDLINE | ID: mdl-32994285

ABSTRACT

Methanogenic archaea are key players in cycling organic matter in nature but also in engineered waste treatment systems, where they generate methane, which can be used as a renewable energy source. In such systems in the built environment, complex methanogenic consortia are known to aggregate into highly organized, spherical granular biofilms comprising the interdependent microbial trophic groups mediating the successive stages of the anaerobic digestion (AD) process. This study separated methanogenic granules into a range of discrete size fractions, hypothesizing different biofilm growth stages, and separately supplied each with specific substrates to stimulate the activity of key AD trophic groups, including syntrophic acid oxidizers and methanogens. Rates of specific methanogenic activity were measured, and amplicon sequencing of 16S rRNA gene transcripts was used to resolve phylotranscriptomes across the series of size fractions. Increased rates of methane production were observed in each of the size fractions when hydrogen was supplied as the substrate compared with those of volatile fatty acids (acetate, propionate, and butyrate). This was connected to a shift toward hydrogenotrophic methanogenesis dominated by Methanobacterium and Methanolinea Interestingly, the specific active microbiomes measured in this way indicated that size was significantly more important than substrate in driving the structure of the active community in granules. Multivariate integration studywise discriminant analysis identified 56 genera shaping changes in the active community across both substrate and size. Half of those were found to be upregulated in the medium-sized granules, which were also the most active and potentially of the most important size, or life stage, for precision management of AD systems.IMPORTANCE Biological wastewater conversion processes collectively constitute one of the single biggest worldwide applications of microbial communities. There is an obvious requirement, therefore, to study the microbial systems central to the success of such technologies. Methanogenic granules, in particular, are architecturally fascinating biofilms that facilitate highly organized cooperation within the metabolic network of the anaerobic digestion (AD) process and, thus, are especially intriguing model systems for microbial ecology. This study, in a way not previously reported, provoked syntrophic and methanogenic activity and the structure of the microbial community, using specific substrates targeting the key trophic groups in AD. Unexpectedly, granule size more strongly than substrate shaped the active portion of the microbial community. Importantly, the findings suggest the size, or age, of granules inherently shapes the active microbiome linked to a life cycle. This provides exciting insights into the function of, and the potential for additional modeling of biofilm development in, methanogenic granules.

8.
Front Microbiol ; 11: 1126, 2020.
Article in English | MEDLINE | ID: mdl-32582085

ABSTRACT

Methanogenic sludge granules are densely packed, small, spherical biofilms found in anaerobic digesters used to treat industrial wastewaters, where they underpin efficient organic waste conversion and biogas production. Each granule theoretically houses representative microorganisms from all of the trophic groups implicated in the successive and interdependent reactions of the anaerobic digestion (AD) process. Information on exactly how methanogenic granules develop, and their eventual fate will be important for precision management of environmental biotechnologies. Granules from a full-scale bioreactor were size-separated into small (0.6-1 mm), medium (1-1.4 mm), and large (1.4-1.8 mm) size fractions. Twelve laboratory-scale bioreactors were operated using either small, medium, or large granules, or unfractionated sludge. After >50 days of operation, the granule size distribution in each of the small, medium, and large bioreactor sets had diversified beyond-to both bigger and smaller than-the size fraction used for inoculation. Interestingly, extra-small (XS; <0.6 mm) granules were observed, and retained in all of the bioreactors, suggesting the continuous nature of granulation, and/or the breakage of larger granules into XS bits. Moreover, evidence suggested that even granules with small diameters could break. "New" granules from each emerging size were analyzed by studying community structure based on high-throughput 16S rRNA gene sequencing. Methanobacterium, Aminobacterium, Propionibacteriaceae, and Desulfovibrio represented the majority of the community in new granules. H2-using, and not acetoclastic, methanogens appeared more important, and were associated with abundant syntrophic bacteria. Multivariate integration (MINT) analyses identified distinct discriminant taxa responsible for shaping the microbial communities in different-sized granules.

9.
Bioresour Technol ; 307: 123221, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32222691

ABSTRACT

Low temperature anaerobic digestion remains in its infancy, despite increasing interest for the treatment of complex wastewaters. In this study, the feasibility of low-temperature anaerobic treatment of dairy wastewater was assessed during a 443-day laboratory-scale bioreactor trial. The bioreactors were operated in triplicate at organic loading rates of 7.5-9 kgCODm-3d-1 throughout five operational phases. The structure of the microbial community was analysed using quantitative real-time PCR and amplicon sequencing of 16S rRNA genes from DNA and rRNA. The results indicated that low-temperature treatment of dairy wastewater is feasible at 15 °C, but that reactor configuration remains extremely important. The upflow anaerobic sludge bed (UASB) configuration out-performed the expanded granular sludge bed (EGSB)-based configurations. Decreased temperatures resulted in significant reductions in microbiome diversity. Methanosaeta was identified as a dominant genus throughout the trial, while Lactococcus was identified as an important bacterial genus at low-temperatures. However, the relative abundance of Lactococcus was significantly influenced by reactor configuration.


Subject(s)
Microbiota , Wastewater , Anaerobiosis , Bioreactors , RNA, Ribosomal, 16S , Sewage , Temperature , Waste Disposal, Fluid
10.
Biotechnol Biofuels ; 11: 108, 2018.
Article in English | MEDLINE | ID: mdl-29651303

ABSTRACT

BACKGROUND: Nowadays, the vast majority of chemicals are either synthesised from fossil fuels or are extracted from agricultural commodities. However, these production approaches are not environmentally and economically sustainable, as they result in the emission of greenhouse gases and they may also compete with food production. Because of the global agreement to reduce greenhouse gas emissions, there is an urgent interest in developing alternative sustainable sources of chemicals. In recent years, organic waste streams have been investigated as attractive and sustainable feedstock alternatives. In particular, attention has recently focused on the production of caproate from mixed culture fermentation of low-grade organic residues. The current approaches for caproate synthesis from organic waste are not economically attractive, as they involve the use of two-stage anaerobic digestion systems and the supplementation of external electron donors, both of which increase its production costs. This study investigates the feasibility of producing caproate from food waste (FW) without the supplementation of external electron donors using a single-phase reactor system. RESULTS: Replicate leach-bed reactors were operated on a semi-continuous mode at organic loading of 80 g VS FW l-1 and at solid retention times of 14 and 7 days. Fermentation, rather than hydrolysis, was the limiting step for caproate production. A higher caproate production yield 21.86 ± 0.57 g COD l-1 was achieved by diluting the inoculating leachate at the beginning of each run and by applying a leachate recirculation regime. The mixed culture batch fermentation of the FW leachate was able to generate 23 g caproate COD l-1 (10 g caproate l-1), at a maximum rate of 3 g caproate l-1 day-1 under high H2 pressure. Lactate served as the electron donor and carbon source for the synthesis of caproate. Microbial community analysis suggested that neither Clostridium kluyveri nor Megasphaera elsdenii, which are well-characterised caproate producers in bioreactors systems, were strongly implicated in the synthesis of caproate, but that rather Clostridium sp. with 99% similarity to Ruminococcaceae bacterium CPB6 and Clostridium sp. MT1 likely played key roles in the synthesis of caproate. This finding indicates that the microbial community capable of caproate synthesis could be diverse and may therefore help in maintaining a stable and robust process. CONCLUSIONS: These results indicate that future, full-scale, high-rate caproate production from carbohydrate-rich wastes, associated with biogas recovery, could be envisaged.

SELECTION OF CITATIONS
SEARCH DETAIL
...