Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Vavilovskii Zhurnal Genet Selektsii ; 26(4): 394-401, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35903306

ABSTRACT

Due to cessation of mass smallpox vaccination in 1980, the collective immunity of humans against orthopoxvirus infections has virtually been lost. Therefore, the risk of spreading zoonotic human orthopoxvirus infections caused by monkeypox and cowpox viruses has increased in the world. First-generation smallpox vaccines based on Vaccinia virus (VAC) are reactogenic and therefore not suitable for mass vaccination under current conditions. This necessitates the development of modern safe live vaccines based on VAC using genetic engineering. We created the VACΔ6 strain by transient dominant selection. In the VACΔ6 genome, f ive virulence genes were intentionally deleted, and one gene was inactivated by inserting a synthetic DNA fragment. The virus was passaged 71 times in CV-1 cells to obtain the VACΔ6 strain from the VAC LIVP clonal variant. Such a long passage history might have led to additional off-target mutations in VACΔ6 compared to the original LIVP variant. To prevent this, we performed a genome-wide sequencing of VAC LIVP, VACΔ6, and f ive intermediate viral strains to assess possible off-target mutations. A comparative analysis of complete viral genomes showed that, in addition to target mutations, only two nucleotide substitutions occurred spontaneously when obtaining VACΔ4 from the VACΔ3 strain; the mutations persisting in the VACΔ5 and VACΔ6 genomes. Both nucleotide substitutions are located in intergenic regions (positions 1431 and 189738 relative to LIVP), which indicates an extremely rare occurrence of off-target mutations when using transient dominant selection to obtain recombinant VAC variants with multiple insertions/deletions. To assess the genome stability of the resulting attenuated vaccine strain, 15 consecutive cycles of cultivation of the industrial VACΔ6 strain were performed in 4647 cells certif ied for vaccine production in accordance with the "Guidelines for Clinical Trials of Medicinal Products". PCR and sequencing analysis of six DNA fragments corresponding to the regions of disrupted genes in VACΔ6 showed that all viral DNA sequences remained unchanged after 15 passages in 4647 cells.

2.
Mol Biol ; 56(3): 463-468, 2022.
Article in English | MEDLINE | ID: mdl-35693978

ABSTRACT

Coronaviridae is a family of single-stranded RNA (ssRNA) viruses that can cause diseases with high mortality rates. SARS-CoV-1 and MERS-CoV appeared in 2002‒2003 and 2012, respectively. A novel coronavirus, SARS-CoV-2, emerged in 2019 in Wuhan (China) and has caused more than 5 million deaths in worldwide. The entry of SARS-CoV-1 into the cell is due to the interaction of the viral spike (S) protein and the cell protein, angiotensin-converting enzyme 2 (ACE2). After infection, virus assembly occurs in Golgi apparatus-derived vesicles during exocytosis. One of the possible participants in this process is LAMP1 protein. We established transgenic Vero cell lines with increased expression of human LAMP1 gene and evaluated SARS-CoV-1 and SARS-CoV-2 production. An increase in the production of both viruses in LAMP1-expressing cells when compared with Vero cells was observed, especially in the presence of trypsin during infection. From these results it can be assumed that LAMP1 promotes SARS-CoV-1 and SARS-CoV-2 production due to enhanced exocytosis.

3.
Mol Biol (Mosk) ; 56(3): 503-509, 2022.
Article in Russian | MEDLINE | ID: mdl-35621107

ABSTRACT

Coronaviridae is a family of single-stranded RNA (ssRNA) viruses that can cause diseases with high mortality rates. SARS-CoV-1 and MERS-CoV appeared in 2002-2003 and 2012, respectively. A novel coronavirus, SARS-CoV-2, emerged in 2019 in Wuhan (China) and has caused more than 5 million deaths in worldwide. The entry of SARS-CoV-1 into the cell is due to the interaction of the viral spike (S) protein and the cell protein, angiotensin-converting enzyme 2 (ACE2). After infection, virus assembly occurs in Golgi apparatus-derived vesicles during exocytosis. One of the possible participants in this process is LAMP1 protein. We established transgenic Vero cell lines with increased expression of human LAMP1 gene and evaluated SARS-CoV-1 and SARS-CoV-2 production. An increase in the production of both viruses in LAMP1-expressing cells when compared with Vero cells was observed, especially in the presence of trypsin during infection. From these results it can be assumed that LAMP1 promotes SARS-CoV-1 and SARS-CoV-2 production due to enhanced exocytosis.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Animals, Genetically Modified , COVID-19/genetics , Chlorocebus aethiops , Humans , Lysosomal Membrane Proteins , Peptidyl-Dipeptidase A/genetics , SARS-CoV-2/genetics , Vero Cells
4.
Vopr Virusol ; 65(1): 49-56, 2020.
Article in Russian | MEDLINE | ID: mdl-32496721

ABSTRACT

INTRODUCTION: Currently, new directions in cancer therapy are actively developing, one of which is oncolytic immunotherapy. This approach would be to use of viruses as cancer specific cytolytic agents capable of stimulating both the tumor-specific and non-specific immune response. The objective paper was obtain a recombinant vaccinia virus containing genes encoding immunostimulating molecules and study oncolytic and immunostimulating properties of recombinant virus. MATERIAL AND METHODS: MTT test, ELISA, methods of transient dominant selection. RESULTS: The recombinant vaccinia virus (L-IVP_oncoB) were obtained with deletion of the gene encoding thymidine kinase and had an integrated gene encoding GM-CSF. Also the virus have deletion of the gene encoding viral growth factor and integrated genes encoding synthetic tumor-specific polyepitopic immunogens. It was shown that the modifications made to the viral genome did not affect the growth characteristics of the virus when cultured on CV-1 and 4647 cell cultures, and the cytopathogenic efficacy of the virus was determined in relation to cancer cultures of cells of various genesis. In in vivo experiment, it was revealed that the polyepitopic construct in the genome L-IVP_oncoB is able to initiate a change in the profile of cytokines. DISCUSSION: The obtained data characterized L-IVP_oncoB as a promising cytopathogenic and immunostimulating agent and showed the need for further study of its properties as means of oncolytic immunotherapy. CONCLUSION: The basic experiments on the evaluation of the biological properties of the obtained L-IVP_oncoB, which are necessary for the characterization of the oncolytic virus, have been carried out.


Subject(s)
Breast Neoplasms/therapy , Oncolytic Viruses/genetics , Vaccinia virus/genetics , Virus Replication/genetics , Animals , Breast Neoplasms/genetics , Breast Neoplasms/virology , Cell Line, Tumor , Female , Genetic Vectors/genetics , Genetic Vectors/pharmacology , Humans , Immunotherapy , Orthopoxvirus/genetics , Poxviridae/genetics , Virus Replication/immunology
5.
Epidemiol Infect ; 145(4): 755-759, 2017 03.
Article in English | MEDLINE | ID: mdl-27917750

ABSTRACT

We investigated the first laboratory-confirmed human case of cowpox virus infection in Russia since 1991. Phylogenetic studies of haemagglutinin, TNF-α receptor-like protein and thymidine kinase regions showed significant differences with known orthopoxviruses, including unique amino-acid substitutions and deletions. The described cowpox virus strain, taking into account differences, is genetically closely related to strains isolated years ago in the same geographical region (European part of Russia and Finland), which suggests circulation of viral strains with common origin in wild rodents without spread over long distances and appearance in other parts of the world.


Subject(s)
Cowpox virus/isolation & purification , Cowpox/diagnosis , Adolescent , Cowpox virus/classification , Cowpox virus/genetics , Humans , Male , Phylogeny , Russia , Sequence Analysis, DNA , Sequence Homology , Viral Proteins/genetics
6.
Dokl Biochem Biophys ; 469(1): 284-7, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27599513

ABSTRACT

Wistar rats with collagen-induced arthritis were intramuscularly injected with the recombinant plasmid pcDNA/sTNF-BD encoding the sequence of the TNF-binding protein domain of variola virus CrmB protein (VARV sTNF-BD) or the pcDNA3.1 vector. Quantitative analysis showed that the histopathological changes in the hind-limb joints of rats were most severe in the animals injected with pcDNA3.1 and much less severe in the group of rats injected with pcDNA/sTNF-BD, which indicates that gene therapy of rheumatoid arthritis is promising in the case of local administration of plasmids governing the synthesis of VARV immunomodulatory proteins.


Subject(s)
Arthritis, Experimental/metabolism , Arthritis, Experimental/therapy , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/therapy , Carrier Proteins/administration & dosage , Carrier Proteins/genetics , Genetic Therapy/methods , Viral Proteins/administration & dosage , Viral Proteins/genetics , Animals , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/pathology , Female , Genetic Vectors , Hindlimb/pathology , Injections, Intramuscular , Male , Rats, Wistar , Synovitis/metabolism , Synovitis/pathology , Synovitis/therapy , Treatment Outcome , Variola virus
8.
Bull Exp Biol Med ; 157(2): 249-52, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24952494

ABSTRACT

The biological characteristics of a 17-kDa protein synthesized in bacterial cells, a TNF-binding domain (VARV-TNF-BP) of a 47-kDa variola virus CrmB protein (VARV-CrmB) consisting of TNF-binding and chemokine-binding domains, were studied. Removal of the C-terminal chemokine-binding domain from VARV-CrmB protein was inessential for the efficiency of its inhibition of TNF cytotoxicity towards L929 mouse fibroblast culture and for TNF-induced oxidative metabolic activity of mouse blood leukocytes. The results of this study could form the basis for further studies of VARV-TNF-BP mechanisms of activity for prospective use in practical medicine.


Subject(s)
Tumor Necrosis Factor-alpha/metabolism , Variola virus/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Animals , Cell Line , Mice , Oxidation-Reduction/drug effects , Protein Binding , Tumor Necrosis Factor-alpha/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...