Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 28(42): 425703, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-28930100

ABSTRACT

Silver nanowire transparent electrodes have shown considerable potential to replace conventional transparent conductive materials. However, in this report we show that Joule heating is a unique and serious problem with these electrodes. When conducting current densities encountered in organic solar cells, the average surface temperature of indium tin oxide (ITO) and silver nanowire electrodes, both with sheet resistances of 60 ohms/square, remains below 35 °C. However, in contrast to ITO, the temperature in the nanowire electrode is very non-uniform, with some localized points reaching temperatures above 250 °C. These hotspots accelerate nanowire degradation, leading to electrode failure after 5 days of continuous current flow. We show that graphene, a commonly used passivation layer for these electrodes, slows nanowire degradation and creates a more uniform surface temperature under current flow. However, the graphene does not prevent Joule heating in the nanowires and local points of high temperature ultimately shift the failure mechanism from nanowire degradation to melting of the underlying plastic substrate. In this paper, surface temperature mapping, lifetime testing under current flow, post-mortem analysis, and modelling illuminate the behaviour and failure mechanisms of nanowires under extended current flow and provide guidelines for managing Joule heating.

2.
Nanoscale ; 9(17): 5725-5736, 2017 May 04.
Article in English | MEDLINE | ID: mdl-28426077

ABSTRACT

Raspberry-like nano-objects made of large plasmonic satellites (>10 nm) covering a central dielectric particle have many potential applications as photonic materials, superlenses and (bio-) sensors, but their synthesis remains challenging. Herein, we show how to build stable and robust raspberry-like nano-systems with close-packed satellites, by combining monodisperse silica particles (80 or 100 nm diameter) and oppositely charged noble metal nanoparticles (Au or Ag) with well-defined sizes (10-50 nm). The spectral characteristics of their associated plasmonic resonances (wavelength, linewidth, extinction cross-section) and the electromagnetic coupling between satellites were observed using the spatial modulation spectroscopy technique and interpreted through a numerical model. The composite nano-objects exhibit numerous hot spots at satellite junctions, resulting in excellent surface-enhanced Raman scattering (SERS) performance. The SERS efficiency of the raspberry-like clusters is highly dependent on their structure.

3.
Faraday Discuss ; 191: 105-116, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27412078

ABSTRACT

We synthesize robust clusters of gold satellites positioned with tetrahedral symmetry on the surface of a patchy silica core by adsorption and growth of gold on the patches. First we conduct emulsion polymerization of styrene in the presence of 52 nm silica seeds whose surface has been modified with methacryloxymethyltriethoxysilane (MMS). We derive four-dimple particles from the resulting silica/polystyrene tetrapods. Polystyrene chains are covalently bound to the silica surface within the dimples due to the MMS grafts and they may be thiolated to induce adsorption of 12 nm gold particles. Using chloroauric acid, ascorbic acid and sodium citrate at room temperature, we grow gold from these 12 nm seeds without detachment from or deformation of the dimpled silica surface. We obtain gold satellites of tunable diameter up to 140 nm.

4.
Langmuir ; 29(6): 1790-5, 2013 Feb 12.
Article in English | MEDLINE | ID: mdl-23305466

ABSTRACT

This article reports a one-step approach for the fabrication of highly uniform, spherical Ag particles with tailored dimensions ranging from 10 to 30 nm. Coated with silica shell, the high uniformity of the particles allows their spontaneous assembly into millimeter-long extended 3-D arrays with transverse dimensions of tens of micrometers, using a microfluidic evaporation-based process.

5.
J Phys Chem A ; 111(42): 10640-5, 2007 Oct 25.
Article in English | MEDLINE | ID: mdl-17914766

ABSTRACT

Radiolytic reduction of BiOClO4 in aqueous solutions leads to the formation of bismuth clusters and larger nanoparticles. The mechanisms of redox reactions of the polycationic Bi(III) species that exist in the solution were investigated with pulse radiolysis. The kinetic and spectral properties of the transients formed by the reaction of these species with the primary radicals from water radiolysis are reported. The single-electron reduction product, Bi9(OH)224+, absorbs at lambdamax = 273 nm, while the OH adduct, Bi9(OH)235+, has a broad absorption spectrum with a maximum at 280 nm and a shoulder at 420 nm. Several rate constants were measured: k (e-aq + Bi9(OH)225+) = 1.2 x 1010 M-1 s-1 and k (OH + Bi9(OH)225+) = 1.5 x 109 M-1 s-1. The reduced species, Bi9(OH)224+ further reacts with (CH3)2COH radicals, but not with CH2C(CH3)2OH radicals from t-butanol, to produce a doubly reduced polynuclear species. A few reactions of the reduction of the Bi salt in the presence of poly(acrylic acid) are also described. In the presence of the polymer, a metal-polymer complex is formed prior to the irradiation, and the reduction reactions are significantly slowed down.

SELECTION OF CITATIONS
SEARCH DETAIL
...