Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rep Prog Phys ; 86(3)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36596254

ABSTRACT

Glaciers distinct from the Greenland and Antarctic ice sheets are currently losing mass rapidly with direct and severe impacts on the habitability of some regions on Earth as glacier meltwater contributes to sea-level rise and alters regional water resources in arid regions. In this review, we present the different techniques developed during the last two decades to measure glacier mass change from space: digital elevation model (DEM) differencing from stereo-imagery and synthetic aperture radar interferometry, laser and radar altimetry and space gravimetry. We illustrate their respective strengths and weaknesses to survey the mass change of a large Arctic ice body, the Vatnajökull Ice Cap (Iceland) and for the steep glaciers of the Everest area (Himalaya). For entire regions, mass change estimates sometimes disagree when a similar technique is applied by different research groups. At global scale, these discrepancies result in mass change estimates varying by 20%-30%. Our review confirms the need for more thorough inter-comparison studies to understand the origin of these differences and to better constrain regional to global glacier mass changes and, ultimately, past and future glacier contribution to sea-level rise.

2.
Nat Geosci ; 10(9): 668-673, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28890734

ABSTRACT

High Mountain Asia hosts the largest glacier concentration outside the polar regions. These glaciers are important contributors to streamflow in one of the most populated areas of the world. Past studies have used methods that can only provide regionally-averaged glacier mass balances to assess the High Mountain Asia glacier contribution to rivers and sea level rise. Here we compute the mass balance for about 92 % of the glacierized area of High Mountain Asia using time series of digital elevation models derived from satellite stereo-imagery. We calculate an average region-wide mass balance of -16.3 ± 3.5 Gt yr-1 (-0.18 ± 0.04 m w.e. yr-1) between 2000 and 2016, which is less negative than most previous estimates. Region-wide mass balances vary from -4.0 ± 1.5 Gt yr-1 (-0.62 ± 0.23 m w.e. yr-1) in Nyainqentanglha to +1.4 ± 0.8 Gt yr-1 (+0.14 ± 0.08 m w.e. yr-1) in Kunlun, with large intra-regional variability of individual glacier mass balances (standard deviation within a region ˜0.20 m w.e. yr-1). Specifically, our results shed light on the Nyainqentanglha and Pamir glacier mass changes, for which contradictory estimates exist in the literature. They provide crucial information for the calibration of the models used for projections of future glacier response to climatic changes, models that presently do not capture the pattern, magnitude and intra-regional variability of glacier changes in High Mountain Asia.

SELECTION OF CITATIONS
SEARCH DETAIL
...