Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuron ; 95(6): 1283-1291.e4, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28844526

ABSTRACT

Neuronal activity generates ionic flows and thereby both magnetic fields and electric potential differences, i.e., voltages. Voltage measurements are widely used but suffer from isolating and smearing properties of tissue between source and sensor, are blind to ionic flow direction, and reflect the difference between two electrodes, complicating interpretation. Magnetic field measurements could overcome these limitations but have been essentially limited to magnetoencephalography (MEG), using centimeter-sized, helium-cooled extracranial sensors. Here, we report on in vivo magnetic recordings of neuronal activity from visual cortex of cats with magnetrodes, specially developed needle-shaped probes carrying micron-sized, non-cooled magnetic sensors based on spin electronics. Event-related magnetic fields inside the neuropil were on the order of several nanoteslas, informing MEG source models and efforts for magnetic field measurements through MRI. Though the signal-to-noise ratio is still inferior to electrophysiology, this proof of concept demonstrates the potential to exploit the fundamental advantages of magnetophysiology.


Subject(s)
Magnetoencephalography/instrumentation , Magnetoencephalography/methods , Neurons/physiology , Animals , Cats , Evoked Potentials/physiology , Female , Male , Visual Cortex/physiology
2.
Sci Rep ; 6: 39330, 2016 12 19.
Article in English | MEDLINE | ID: mdl-27991562

ABSTRACT

The electrical activity of brain, heart and skeletal muscles generates magnetic fields but these are recordable only macroscopically, such as in magnetoencephalography, which is used to map neuronal activity at the brain scale. At the local scale, magnetic fields recordings are still pending because of the lack of tools that can come in contact with living tissues. Here we present bio-compatible sensors based on Giant Magneto-Resistance (GMR) spin electronics. We show on a mouse muscle in vitro, using electrophysiology and computational modeling, that this technology permits simultaneous local recordings of the magnetic fields from action potentials. The sensitivity of this type of sensor is almost size independent, allowing the miniaturization and shaping required for in vivo/vitro magnetophysiology. GMR-based technology can constitute the magnetic counterpart of microelectrodes in electrophysiology, and might represent a new fundamental tool to investigate the local sources of neuronal magnetic activity.


Subject(s)
Action Potentials , Electrophysiological Phenomena , Magnetic Fields , Magnetics/instrumentation , Muscle, Skeletal/physiology , Animals , Computer Simulation , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...