Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(12)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208102

ABSTRACT

This work reports the use of two monomers with two tertiary amines and four methacrylic (TTME) or acrylic (TTAC) terminal groups as co-initiators in the formulation of experimental resin adhesive systems. Both monomers were characterized by FT-IR and 1H NMR spectroscopies. The control adhesive was formulated with BisGMA, TEGDMA, HEMA, and the binary system CQ-EDAB as a photo-initiator system. For the experimental adhesives, the EDAB was completely replaced for the TTME or the TTAC monomers. The adhesives formulated with TTME or TTAC monomers achieved double bond conversion values close to 75%. Regarding the polymerization rate, materials formulated with TTME or TTAC achieved lower values than the material formulated with EDAB, giving them high shelf-life stability. The degree of conversion after shelf simulation was only reduced for the EDAB material. Ultimate tensile strength, translucency parameter, and micro-tensile bond strength to dentin were similar for control and experimental adhesive resins. Due to their characteristics, TTME and TTAC monomers are potentially useful in the formulation of photopolymerizable resins for dental use with high shelf-life stability.

2.
Dent Mater ; 36(4): 542-550, 2020 04.
Article in English | MEDLINE | ID: mdl-32061442

ABSTRACT

OBJECTIVE: The use of the BisGMA as base monomer in dental composites has been questioned because of bisphenol A (BPA) is used as raw material in its synthesis, and BPA possess estrogenic potential associated to several health problems. This study describes the synthesis of the trimethacrylate tris(4-hydroxyphenyl)methane triglycidyl methacrylate (TTM) monomer and evaluate its effect when used as base monomer in the formulation of experimental photopolymerizable composite resins. METHODS: The TTM monomer was synthesized by a nucleophilic acyl substitution. Its chemical structure was confirmed via 1H and 13C NMR spectroscopy and FTIR spectroscopy. Experimental composite resins were formulated by mixing TTM, triethyleneglycol dimethacrylate (TEGDMA) and inorganic fillers. A BisGMA/TEGDMA based composite resin was prepared and used as control to compare several physicochemical properties. Cell viability assay was used for cytotoxicity evaluation. RESULTS: TTM was successfully synthesized with quantitative yields. The results showed that the TTM-based composite resin had similar values of flexural strength, elastic modulus, degree of conversion and polymerization shrinkage than the control (p > 0.05). Water sorption and solubility were statistically significantly higher than the control (p < 0.05), however they complied the requirements stablished by the ISO 4049. Finally, this study shows there were no statistically significant differences for the biocompatibility outcomes (p = 0.345). SIGNIFICANCE: TTM monomer could be potentially useful in the formulation of BisGMA free composite resins, which could mean to minimize the human exposure to BPA.


Subject(s)
Composite Resins , Polymethacrylic Acids , Bisphenol A-Glycidyl Methacrylate , Flexural Strength , Humans , Materials Testing , Methacrylates , Polyethylene Glycols , Polymerization , Solubility
3.
J Mech Behav Biomed Mater ; 104: 103613, 2020 04.
Article in English | MEDLINE | ID: mdl-31929099

ABSTRACT

Two liquid monomers (CT-AL and CT-ACR) were synthesized from the acylation of tert-butyl catechol with different acid chlorides. The monomers were used to prepare photopolymerizable dental composite for completely replacing TEGDMA. Properties such as flexural strength, modulus of elasticity, degree of double bond conversion, polymerization shrinkage, as well as the polymerization stress were studied. Also, color alteration, translucency, and cytotoxicity were evaluated. The results show that the experimental materials formulated with CT-AL and CT-ACR have similar mechanical properties to a control material formulated with BisGMA/TEGDMA, similar polymerization shrinkage, and less polymerization stress. The composite formulated with the CT-AL monomer shows a similar degree of conversion (72%), while the composite formulated with the CT-ACR monomer has a degree of conversion lower (58%) than the control resin (71%). These results suggest that both monomers could have potential applications in the formulation of composites for dental restorations.


Subject(s)
Composite Resins , Methacrylates , Bisphenol A-Glycidyl Methacrylate , Catechols , Dental Materials , Materials Testing , Polyethylene Glycols , Polymerization , Polymethacrylic Acids
SELECTION OF CITATIONS
SEARCH DETAIL
...