Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
World J Microbiol Biotechnol ; 39(10): 264, 2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37515608

ABSTRACT

Bacterial degradation of crude oil is a promising strategy for reducing the concentration of hydrocarbons in contaminated environments. In the first part of this study, we report the enrichment of two bacterial consortia from deep sediments of the Gulf of Mexico with crude oil as the sole carbon and energy source. We conducted a comparative analysis of the bacterial community in the original sediment, assessing its diversity, and compared it to the enrichment observed after exposure to crude oil in defined cultures. The consortium exhibiting the highest hydrocarbon degradation was predominantly enriched with Rhodococcus (75%). Bacterial community analysis revealed the presence of other hydrocarbonoclastic members in both consortia. In the second part, we report the isolation of the strain Rhodococcus sp. GOMB7 with crude oil as a unique carbon source under microaerobic conditions and its characterization. This strain demonstrated the ability to degrade long-chain alkanes, including eicosane, tetracosane, and octacosane. We named this new strain Rhodococcus qingshengii GOMB7. Genome analysis revealed the presence of several genes related to aromatic compound degradation, such as benA, benB, benC, catA, catB, and catC; and five alkB genes related to alkane degradation. Although members of the genus Rhodococcus are well known for their great metabolic versatility, including the aerobic degradation of recalcitrant organic compounds such as petroleum hydrocarbons, this is the first report of a novel strain of Rhodococcus capable of degrading long-chain alkanes under microaerobic conditions. The potential of R. qingshengii GOMB7 for applications in bioreactors or controlled systems with low oxygen levels offers an energy-efficient approach for treating crude oil-contaminated water and sediments.


Subject(s)
Petroleum , Rhodococcus , Petroleum/metabolism , Gulf of Mexico , Alkanes/metabolism , Hydrocarbons/metabolism , Rhodococcus/metabolism , Biodegradation, Environmental
2.
Front Bioeng Biotechnol ; 9: 794742, 2021.
Article in English | MEDLINE | ID: mdl-35083204

ABSTRACT

Yeast surface display (YSD) is a "whole-cell" platform used for the heterologous expression of proteins immobilized on the yeast's cell surface. YSD combines the advantages eukaryotic systems offer such as post-translational modifications, correct folding and glycosylation of proteins, with ease of cell culturing and genetic manipulation, and allows of protein immobilization and recovery. Additionally, proteins displayed on the surface of yeast cells may show enhanced stability against changes in temperature, pH, organic solvents, and proteases. This platform has been used to study protein-protein interactions, antibody design and protein engineering. Other applications for YSD include library screening, whole-proteome studies, bioremediation, vaccine and antibiotics development, production of biosensors, ethanol production and biocatalysis. YSD is a promising technology that is not yet optimized for biotechnological applications. This mini review is focused on recent strategies to improve the efficiency and selection of displayed proteins. YSD is presented as a cutting-edge technology for the vectorial expression of proteins and peptides. Finally, recent biotechnological applications are summarized. The different approaches described herein could allow for a better strategy cascade for increasing protein/peptide interaction and production.

3.
Mar Biotechnol (NY) ; 23(1): 106-126, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33215353

ABSTRACT

The search for novel biosurfactants (Bs) requires the isolation of microorganisms from different environments. The Gulf of Mexico (GoM) is a geographical area active in the exploration and exploitation of hydrocarbons. Recent metagenomic and microbiologic studies in this area suggested a potential richness for novel Bs microbial producers. In this work, nineteen bacterial consortia from the GoM were isolated at different depths of the water column and marine sediments. Bs production from four bacterial consortia was detected by the CTAB test and their capacity to reduce surface tension (ST), emulsion index (EI24), and hemolytic activity. These bacterial consortia produced Bs in media supplemented with kerosene, diesel, or sucrose. Cultivable bacteria from these consortia were isolated and identified by bacterial polyphasic characterization. In some consortia, Enterobacter cloacae was the predominant specie. E. cloacae BAGM01 presented Bs activity in minimal medium and was selected to improve its Bs production using a Taguchi and Box-Behnken experimental design; this strain was able to grow and presented Bs activity at 35 g L-1 of NaCl. This Bs decreased ST to around 34.5 ± 0.56 mNm-1 and presented an EI24 of 71 ± 1.27%. Other properties of this Bs were thermal stability, stability in alkaline conditions, and stability at high salinity, conferring important and desirable characteristics in multiple industries. The analysis of the genome of E. cloacae BAGM01 showed the presence of rhlAB genes that have been reported in the synthesis of rhamnolipids, and alkAB genes that are related to the degradation of alkanes. The bioactive molecule was identified as a rhamnolipid after HPLC derivatization, 1H NMR, and UPLC-QTOF-MS analysis.


Subject(s)
Enterobacter cloacae/genetics , Enterobacter cloacae/metabolism , Glycolipids/chemistry , Surface-Active Agents/chemistry , Bacteria/isolation & purification , Gulf of Mexico , Microbial Consortia , Salinity
4.
Biotechnol Appl Biochem ; 68(6): 1202-1215, 2021 Dec.
Article in English | MEDLINE | ID: mdl-32969539

ABSTRACT

Microbial communities capable of hydrocarbon degradation linked to biosurfactant (BS) and bioemulsifier (BE) production are basically unexplored in the Gulf of México (GOM). In this work, the BS and BE production of culturable marine bacterial hydrocarbonoclasts consortia isolated from two sites (the Perdido Fold Belt and Coatzacoalcos area) was investigated. The prospection at different locations and depths led to the screening and isolation of a wide variety of bacterial consortia with BS and BE activities, after culture enrichment with crude oil and glycerol as the carbon sources. At least 55 isolated consortia presented reduction in surface tension (ST) and emulsifying activity (EI24 ). After colony purification, bacteria were submitted to polyphasic analysis assays that resulted in the identification of different strains of cultivable Gammaproteobacteria Gram (-) Citrobacter, Enterobacter, Erwinia, Pseudomonas, Vibrio, Shewanella, Thalassospira, Idiomarina, Pseudoalteromonas, Photobacterium, and Gram (+) Staphylococcus, Bacillus, and Microbacterium. Overall, the best results for ST reduction and EI24 were obtained with consortia. Individually, Pseudomonas, Bacillus, and Enterobacter strains showed the best results for the reduction of ST after 6 days, while Thalassospira and Idiomarina strains showed the best results for EI24 (above 68% after 9 days). Consortia isolates from the GOM had the ability to degrade crude oil by up to 40-80% after 24 and 36 months, respectively. In all cases, biodegradation of crude oil was related to the reduction in ST and bioemulsifying activity and was independent from the depth in the water column.


Subject(s)
Geologic Sediments/microbiology , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/metabolism , Surface-Active Agents/metabolism , Water/chemistry , Emulsions/chemistry , Emulsions/metabolism , Gulf of Mexico , Surface-Active Agents/chemistry
5.
3 Biotech ; 10(4): 146, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32181108

ABSTRACT

In this study, the exact contribution of T. versicolor fungal biomass and laccase in the removal of the Orange II dye from liquid culture was determined. Biomass and laccase were produced with three different carbon sources [bran flakes (BF), wheat bran (WB) and wheat flour (WF)]. The contribution of the biomass and the laccase enzyme in the removal of the Orange II dye was assessed as follows: (A) in vivo treatment with fungal biomass; in vivo treatment with fungal biomass and inhibited laccase (using 0.6 mM sodium azide); and (B) in vitro treatment with crude laccase. The results of fungal biomass production were similar for all the carbon sources evaluated, while laccase volumetric activities were different. The highest enzyme production was obtained with WB, followed by BF and WF. In the in vivo treatment with fungal biomass-laccase, dye removal was over 84% for all the carbon sources. Dye adsorption by fungal biomass varied from 1.5-2%, presenting enzymatic activities ranging from 62 to 163 U L-1. In the in vivo treatment with fungal biomass-inhibited laccase, the removal of the dye varied from 30 to 72%. In this case, the percentage of dye adsorption by fungal biomass was significantly increased and ranged from 18 to 53%. In the in vitro treatment with laccase, the removal ranged from 80 to 84%. The best treatment for dye removal involved the use of both fungal biomass and laccase. The carbon source for biomass and laccase production had an impact on dye removal.

6.
Biotechnol Appl Biochem ; 65(5): 690-700, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29457659

ABSTRACT

In this study, the biosurfactants (Bs) production of two Serratia marcescens strains (SM3 and its isogenic SMRG-5 strain) was improved and the tenso-active agents were purified and characterized. A 23 factorial design was used to evaluate the effect of nitrogen and carbon sources on the surface tension (ST) reduction and emulsion index (EI24 ) of the produced Bs. Optimum Bs production by SM3 was achieved at high concentrations of carbon and nitrogen, reducing ST to 26.5 ± 0.28 dynes/cm, with an EI24 of 79.9 ± 0.2%. Meanwhile, the best results for SMRG-5 were obtained at low concentrations, reducing the ST to 25.2 ± 0.2 dynes/cm, with an EI24 of 89.7 ± 0.28%. The optimal conditions for Bs production were scaled up in a 2-L reactor, yielding 4.8 and 5.2 g/L for SM3 and SMRG-5, respectively. Gas Chromatography-Mass Spectrometry (GC-MS) analysis revealed the presence of two different lipopeptides (hidrofobic fractions: octadecanoic and hexadecanoic acid for SM3 and SMRG5, respectively). Both strains were capable of benzo [a] pyrene removal (59% after 72 H of culture).


Subject(s)
Serratia marcescens/metabolism , Surface-Active Agents/metabolism , Bioreactors , Carbon/analysis , Chromatography, High Pressure Liquid , Chromatography, Thin Layer , Gas Chromatography-Mass Spectrometry , Hydrophobic and Hydrophilic Interactions , Nitrogen/analysis , Serratia marcescens/growth & development , Surface Tension , Surface-Active Agents/chemistry , Surface-Active Agents/isolation & purification
7.
Biotechnol Appl Biochem ; 65(2): 156-172, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28444972

ABSTRACT

In this study, extracellular lipase was produced by Serratia marcescens wild type and three mutant strains. The maximum lipase activity (80 U/mL) was obtained with the SMRG4 mutant strain using soybean oil. Using a 22 factorial design, the lipase production increased 1.55-fold (124 U/mL) with 4% and 0.05% of soybean oil and Triton X-100, respectively. The optimum conditions for maximum lipase activity were 50 °C and pH 8. However, the enzyme was active in a broad range of pH (6-10) and temperatures (5-55 °C). This lipase was stable in organic solvents and in the presence of oxidizing agents. The enzyme also proved to be efficient for the removal of triacylglycerol from olive oil in cotton cloth. A Box-Behnken experimental design was used to evaluate the effects of the interactions between total lipase activity, buffer pH, and wash temperatures on oil removal. The model obtained suggested that all selected factors had a significant impact on oil removal, with optimum conditions of 550 U lipase, 45 °C, pH 9.5, with 79.45% removal. Biotransformation of waste frying oil using the enzyme and in presence of methanol resulted in the synthesis of methyl esters such as methyl oleate, methyl palmitate, and methyl stearate.


Subject(s)
Bacterial Proteins/metabolism , Biofuels , Industrial Microbiology/methods , Lipase/metabolism , Serratia marcescens/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biofuels/analysis , Biofuels/microbiology , Detergents/chemistry , Enzyme Stability , Hydrogen-Ion Concentration , Lipase/chemistry , Lipase/genetics , Mutation , Serratia marcescens/genetics , Serratia marcescens/metabolism , Temperature
8.
Biotechnol Prog ; 33(4): 1015-1034, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28393483

ABSTRACT

Improving laccases continues to be crucial in novel biotechnological developments and industrial applications, where they are concerned. This review breaks down and explores the potential of the strategies (conventional and modern) that can be used for laccase enhancement (increased production and upgraded biochemical properties such as stability and catalytic efficiency). The challenges faced with these approaches are briefly discussed. We also shed light on how these strategies merge and give rise to new options and advances in this field of work. Additionally, this article seeks to serve as a guide for students and academic researchers interested in laccases. This document not only gives basic information on laccases, but also provides updated information on the state of the art of various technologies that are used in this line of investigation. It also gives the readers an idea of the areas extensively studied and the areas where there is still much left to be done. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1015-1034, 2017.


Subject(s)
Biotechnology , Laccase/biosynthesis , Animals , Biocatalysis , Biochemical Phenomena , Humans , Laccase/chemistry
9.
Fungal Biol ; 120(12): 1609-1622, 2016 12.
Article in English | MEDLINE | ID: mdl-27890094

ABSTRACT

A Trametes versicolor laccase was functionally expressed on the membrane surface of Saccharomyces cerevisiae EBY100. Laccase expression was increased 6.57-fold by medium optimization and surpassed production by the native strain. Maximal laccase and biomass production reached 19 735 ± 1719 Ug-1 and 6.22 ± 0.53 gL-1 respectively, after 2 d of culture. Optimum oxidization of all substrates by laccase was observed at pH 3. Laccase showed high affinity towards substrates used with Km (mM) and Vmax (µmol min-1) values of 0.57 ± 0.0047 and 24.55 ± 0.64, 1.52 ± 0.52 and 9.25 ± 1.78, and 2.67 ± 0.12 and 11.26 ± 0.75, were reported for ABTS, 2, 6-DMP and GUA, respectively. EDTA and NaN3 displayed none competitive inhibition towards laccase activity. The optimum temperature for activity was 50 °C; however, the enzyme was stable over a wide range of temperatures (25-70 °C). The biologically immobilized laccase showed high reusability towards phenolic substrates and low reusability with non-phenolic substrates. High affinity for a diversity phenolic compounds and great ethanol tolerance substantiates this laccase/yeast biocatalyst potential for application in the production of bioethanol.


Subject(s)
Cell Surface Display Techniques , Enzymes, Immobilized/metabolism , Gene Expression , Laccase/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Culture Media/chemistry , Enzyme Stability , Enzymes, Immobilized/genetics , Hydrogen-Ion Concentration , Laccase/chemistry , Laccase/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Substrate Specificity , Temperature , Trametes/enzymology , Trametes/genetics
10.
Biotechnol Lett ; 37(2): 391-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25257594

ABSTRACT

Two laccase isoforms (lcc1 and lcc2) produced by Trametes versicolor, grown on oak sawdust under solid-state fermentation conditions, were purified and characterized. The two isoforms showed significant biochemical differences. Lcc1 and lcc2 had MWs of 60 and 100 kDa, respectively. Both isoforms had maximal activity at pH 3 with ABTS and 2,6-dimethyloxyphenol (DMP). Lcc1 was the most attractive isoform due to its greater affinity towards all the laccase substrates used. Lcc1 had Km values of 12, 10, 15 and 17 mM towards ABTS, DMP, guaiacol and syringaldazine, respectively. Lcc2 had equivalent values of 45, 47, 15 and 39 mM. The biochemical properties of lcc1 substantiate the potential of this enzyme for application in the treatment of contaminated water with low pH values and high phenolic content.


Subject(s)
Fungal Proteins/chemistry , Fungal Proteins/metabolism , Laccase/chemistry , Laccase/metabolism , Trametes/enzymology , Fungal Proteins/isolation & purification , Hydrogen-Ion Concentration , Kinetics , Laccase/isolation & purification , Lignin/metabolism , Protein Isoforms , Quercus , Trametes/metabolism
11.
World J Microbiol Biotechnol ; 30(1): 135-42, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23861040

ABSTRACT

The induction of laccase isoforms in Trametes versicolor HEMIM-9 by aqueous extracts (AE) from softwood and hardwood was studied. Samples of sawdust of Pinus sp., Cedrela sp., and Quercus sp. were boiled in water to obtain AE. Different volumes of each AE were added to fungal cultures to determine the amount of AE needed for the induction experiments. Laccase activity was assayed every 24 h for 15 days. The addition of each AE (50 to 150 µl) to the fungal cultures increased laccase production compared to the control (0.42 ± 0.01 U ml(-1)). The highest laccase activities detected were 1.92 ± 0.15 U ml(-1) (pine), 1.87 ± 0.26 U ml(-1) (cedar), and 1.56 ± 0.34 U ml(-1) (oak); laccase productivities were also significantly increased. Larger volumes of any AE inhibited mycelial growth. Electrophoretic analysis revealed two laccase bands (lcc1 and lcc2) for all the treatments. However, when lcc2 was analyzed by isoelectric focusing, inducer-dependent isoform patterns composed of three (pine AE), four (oak AE), and six laccase bands (cedar AE) were observed. Thus, AE from softwood and hardwood had induction effects in T. versicolor HEMIM-9, as indicated by the increase in laccase activity and different isoform patterns. All of the enzymatic extracts were able to decolorize the dye Orange II. Dye decolorization was mainly influenced by pH. The optimum pH for decolorization was pH 5 (85%), followed by pH 7 (50%) and pH 3 (15%). No significant differences in the dye decolorizing capacity were detected between the control and the differentially induced laccase extracts (oak, pine and cedar). This could be due to the catalytic activities of isoforms with pI 5.4 and 5.8, which were detected under all induction conditions.


Subject(s)
Enzyme Activators/metabolism , Laccase/biosynthesis , Plant Extracts/metabolism , Trametes/drug effects , Trametes/enzymology , Wood/chemistry , Azo Compounds/metabolism , Benzenesulfonates/metabolism , Cedrus/chemistry , Enzyme Activators/isolation & purification , Enzyme Stability , Hydrogen-Ion Concentration , Isoenzymes/biosynthesis , Isoenzymes/chemistry , Isoenzymes/isolation & purification , Laccase/chemistry , Laccase/isolation & purification , Pinus/chemistry , Plant Extracts/isolation & purification , Quercus/chemistry , Temperature
12.
Phytochemistry ; 70(17-18): 2017-22, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19815245

ABSTRACT

The diterpenes ent-kaur-16-en-19-oic acid (1) and ent-beyer-15-en-19-oic acid (2) are the major constituents of a spasmolytic diterpenic mixture obtained from the roots of Viguiera hypargyrea, a Mexican medicinal plant. Microbial transformation of 1 and 2 was performed with Aspergillus niger. Two metabolites, ent-7alpha,11beta-dihydroxy-kaur-16-en-19-oic acid (4) and ent-1beta,7alpha-dihydroxy-kaur-16-en-19-oic acid (5), were isolated from the incubation of 1, and one metabolite, ent-1beta,7alpha-dihydroxy-beyer-15-en-19-oic acid (6), was isolated in high yield (40%) from 2. The structures were elucidated on the basis of spectroscopic analyses and confirmed by X-ray crystallographic studies. Compounds 1-4 and 6 and methyl ester derivatives 4a and 6a were evaluated for their ability to inhibit the electrically induced contraction of guinea-pig ileum. Compounds 1, 3, 4, 4a and 5 were significantly active. These results showed that dihydroxylation of 1 at 7beta, 11alpha-, and 1alpha, 7beta-positions resulted in a loss of potency.


Subject(s)
Aspergillus niger/metabolism , Asteraceae/chemistry , Diterpenes/metabolism , Parasympatholytics/pharmacology , Plant Extracts/metabolism , Animals , Biotransformation , Crystallography, X-Ray , Guinea Pigs , Hydroxylation , Ileum/drug effects , In Vitro Techniques , Molecular Structure , Muscle, Smooth/drug effects , Parasympatholytics/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Roots
13.
J Gen Appl Microbiol ; 54(5): 277-84, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19029769

ABSTRACT

We assessed the relationship between growth profile and the extent of biodegradation of Escravos light crude oil by axenic and mixed bacteria cultures in a shake flask. Eleven petroleum-degrading bacteria were isolated by enrichment from oil-contaminated soils including, Pseudomonas effusa, Pseudomonas fluorescens, Pseudomonas cruciviae, Arthrobacter tumescens, Pseudomonas species, Pseudomonas tralucida, Alcaligenes metacaligenes, Micrococcus colpogenes, Bacillus badius, Nocardia paraffinae and Bacillus species. Specific growth rates of axenic cultures of the bacteria during degradation of Escravos light crude oil ranged between 0.0037 and 0.0505 h(-1), while that of the mixed cultures varied from 0.0144 to 0.1301 h(-1). The crude oil was biodegraded by between 28.71% and 99.01% for single cultures and between 12.38% and 91.58% for the mixed cultures. Although specific growth rate and biomass were important at the initial stages of biodegradation, there was no significant correlation between growth rate and biomass and the extent of biodegradation of Escravos light crude oil.


Subject(s)
Culture Media , Gram-Negative Bacteria/growth & development , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/growth & development , Gram-Positive Bacteria/metabolism , Petroleum/metabolism , Biodegradation, Environmental , Biomass , Gram-Negative Bacteria/classification , Gram-Negative Bacteria/isolation & purification , Gram-Positive Bacteria/classification , Gram-Positive Bacteria/isolation & purification , Soil Microbiology , Soil Pollutants
SELECTION OF CITATIONS
SEARCH DETAIL
...