Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-27103330

ABSTRACT

A method using QuEChERS sample preparation with liquid chromatography polarity-switching tandem mass spectrometry was developed and validated for the analysis of quinclorac and its degradation product quinclorac methyl ester in canola seed. The method was used to analyse canola treated with quinclorac, harvest sample composites and samples of canola shipments. Quinclorac residues were present in all samples of canola treated with a quinclorac-containing herbicide that were analysed. Quinclorac was found in 93% of samples, with an average of 0.018 mg kg(-1). All samples contained quinclorac methyl ester, with an average of 0.061 mg kg(-1). The average concentration of total residues (as quinclorac equivalents) on treated canola was 0.075 mg kg(-1), with a range of 0.016-0.124 mg kg(-1). The observed residues were all at least 10 times lower than the Canadian maximum residue limit of 1.5 mg kg(-1). Quinclorac and quinclorac methyl ester were not found in any harvest and export composite samples, which represented the majority of canola grown in western Canada in 2015 and canola exported in late 2015. Even though usage of quinclorac-containing herbicide on canola can result in the presence of low concentrations of residues, the absence of quinclorac residues in harvest and shipment samples suggests that use of quinclorac-containing herbicide was not widespread, and that any residues present were diluted as canola was combined along the grain-handling chain into shipment lots, or segregated and prevented from entering shipment lots.


Subject(s)
Brassica napus/chemistry , Chromatography, High Pressure Liquid/methods , Herbicides , Quinolines/analysis , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Canada , Food Contamination/analysis , Pesticide Residues/analysis , Reproducibility of Results , Seeds/chemistry
2.
J Agric Food Chem ; 61(23): 5438-48, 2013 Jun 12.
Article in English | MEDLINE | ID: mdl-23683132

ABSTRACT

Samples of Canadian western amber durum harvested in 2010 were obtained as part of the Canadian Grain Commission Harvest Sample Program, inspected, and graded according to Canadian guidelines. A subset of Fusarium -damaged samples were analyzed for Fusarium species as well as mycotoxins associated with these species, including deoxynivalenol and other trichothecenes, moniliformin, enniatins, and beauvericin. Overall, Fusarium avenaceum and F. graminearum were the top two most frequently recovered species. Phaeosphaeria nodorum (a.k.a. Septoria nodorum ), F. culmorum , F. poae , F. acuminatum , and F. sporotrichioides were observed in samples as well. All samples analyzed for mycotoxins contained quantifiable concentrations of enniatins, whereas beauvericin, deoxynivalenol, and moniliformin were measured in approximately 75% of the samples. Concentrations in Fusarium -damaged samples ranged from 0.011 to 34.2 mg/kg of enniatins plus beauvericin, up to 4.7 mg/kg of deoxynivalenol, and up to 6.36 mg/kg of moniliformin. Comparisons of enniatins, beauvericin, and moniliformin concentrations to the occurrence of various Fusarium species suggest the existence of an infection threshold above which these emerging mycotoxins are present at higher concentrations. The current grading factor of Fusarium -damaged kernels manages concentrations of these emerging mycotoxins in grain; lower provisional grades were assigned to samples that contained the highest concentrations of enniatins, beauvericin, and moniliformin.


Subject(s)
Food Contamination/analysis , Fusarium/metabolism , Mycotoxins/metabolism , Plant Diseases/microbiology , Triticum/microbiology , Canada , Fusarium/genetics , Fusarium/isolation & purification , Triticum/growth & development
3.
J Agric Food Chem ; 61(23): 5425-37, 2013 Jun 12.
Article in English | MEDLINE | ID: mdl-23683177

ABSTRACT

Harvest samples of common wheat (Triticum aestivum), oats (Avena sativa), and rye (Secale cereale) from producers in western Canada were analyzed for fungal infection by toxigenic Fusarium species and contamination by trichothecenes and moniliformin (MON). Fusarium graminearum and F. avenaceum were the two most frequently isolated species from samples of rye and wheat collected in 2010. F. poae and F. sporotrichioides were more commonly detected in randomly selected oat seeds. Other toxigenic Fusarium species including F. acuminatum, F. culmorum, and F. pseudograminearum as well as Phaeosphaeria nodorum (a.k.a. Septoria nodorum) were recovered primarily from fusarium-damaged kernels of wheat. Pure cultures of F. avenaceum, F. acuminatum, and other related species known to produce moniliformin were isolated from incubated seeds based on micro- and macromorphological criteria. The phylogenetic analysis inferred from partial DNA sequences of the acl1 and tef-1α genes revealed two major clades representing F. avenaceum and F. acuminatum, respectively. These clades comprised all Canadian isolates of the two species and a number of reference cultures studied earlier for their propensity to form moniliformin in vitro and in planta. However, some reference cultures previously reported to produce significant amounts of moniliformin formed minor phylogenetic lineages that represent rather distinct but closely related species. Concomitantly, cereal samples were analyzed for the presence of deoxynivalenol and moniliformin. These two Fusarium toxins were observed most frequently in common wheat, at concentrations up to 1.1 and 4.0 mg/kg, respectively. There was no apparent relationship between moniliformin concentrations and detection of F. avenaceum and F. acuminatum in rye and oat samples. Geographical analysis of the distribution of moniliformin and F. avenaceum and F. acuminatum across the Canadian Prairies also did not indicate a strong relationship.


Subject(s)
Avena/microbiology , Cyclobutanes/metabolism , Food Contamination/analysis , Fusarium/classification , Mycotoxins/metabolism , Secale/microbiology , Triticum/microbiology , Canada , Fusarium/genetics , Fusarium/isolation & purification , Fusarium/metabolism , Molecular Sequence Data , Phylogeny , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...