Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Biotechnol ; 340: 102-109, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34454960

ABSTRACT

In this work, several immobilization strategies for Gluconobacter oxydans NBRC 14819 (Gox) were tested in the bioconversion of crude glycerol to dihydroxyacetone (DHA). Agar, agarose and polyacrylamide were evaluated as immobilization matrixes. Glutaraldehyde crosslinked versions of the agar and agarose preparations were also tested. Agar immobilized Gox proved to be the best heterogeneous biocatalyst in the bioconversion of crude glycerol reaching a quantitative production of 50 g/L glycerol into DHA solely in water. Immobilization allowed reutilization for at least eight cycles, reaching four times more DHA than the amount obtained by a single batch of free cells which cannot be reutilized. An increase in scale of 34 times had no impact on DHA productivity. The results obtained herein constitute a contribution to the microbiological production of DHA as they not only attain unprecedented productivities for the reaction with immobilized biocatalysts but also proved that it is feasible to do it in a clean background of solely water that alleviates the cost of downstream processing.


Subject(s)
Dihydroxyacetone , Gluconobacter oxydans , Biotransformation , Glycerol
2.
AMB Express ; 10(1): 173, 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-32990767

ABSTRACT

A novel IDA-LaNDT derivative was able to reach the highest productivity in the biosynthesis of a well-known antitumoral agent called decitabine. However, the combination of two simple and inexpensive techniques such as ionic absorption and gel entrapment with the incorporation of a bionanocomposite such as bentonite significantly improved the stability of this biocatalyst. These modifications allowed the enhancement of storage stability (for at least 18 months), reusability (400 h of successive batches without significant loss of its initial activity), and thermal and solvent stability with respect to the non-entrapped derivative. Moreover, reaction conditions were optimized by increasing the solubility of 5-aza by dilution with dimethylsulfoxide. Therefore, a scale-up of the bioprocess was assayed using the developed biocatalyst, obtaining 221 mg/L·h of DAC. Finally, green parameters were calculated using the nanostabilized biocatalyst, whose results indicated that it was able to biosynthesize DAC by a smooth, cheap, and environmentally friendly methodology.

3.
J Biotechnol ; 323: 166-173, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-32841608

ABSTRACT

Cladribine (2-chloro-2'-deoxy-ß-d-adenosine) is a 2'-deoxyadenosine analogue, approved by the FDA for the treatment of hairy cell leukemia and more recently has been proved for therapeutic against many autoimmune diseases as multiple sclerosis. The biosynthesis of this compound using Thermomonospora alba CECT 3324 as biocatalyst is herein reported. This thermophilic microorganism was successfully entrapped in polyacrylamide gel supplemented with nanoclays such as bentonite. The immobilized biocatalyst (T. alba-Ac-Bent 1.00 %), was able to biosynthesize cladribine with a conversion of 89 % in 1 h of reaction and retains its activity for more than 270 reuses without significantly activity loss, showing better operational stability and mechanical properties than the natural matrix. A microscale assay using the developed system, could allow the production of at least 181 mg of cladribine in successive bioprocesses.


Subject(s)
Biotransformation , Cladribine/metabolism , Extremophiles/physiology , Acrylic Resins , Antineoplastic Agents/therapeutic use , Biosynthetic Pathways , Cladribine/therapeutic use , Deoxyadenosines , Geobacillus , Leukemia, Hairy Cell/drug therapy , Nanocomposites , Temperature , Thermobifida/growth & development , Thermobifida/metabolism
4.
3 Biotech ; 10(6): 288, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32550107

ABSTRACT

In the present study, a novel extracellular laccase isolated from Geobacillus stearothermophilus ATCC 10149 was entrapped in a bionanocomposite matrix consisting of copper alginate (Cu-alginate) supplemented with the nanoclay bentonite. After optimization, this nanobiocatalyst was able to degrade up to 90% of Remazol Brilliant Blue R (RBBR) without the addition of redox mediators and retained 70% of its initial activity for at least 1440 h, equivalent to more than 288 uses. The incorporation of nanoclay allowed alginate beads to be used in alkaline pH and strengthened its mechanical properties. Besides, this thermophilic laccase was able to decolorize other structurally different synthetic dyes such as Methyl Orange, Malachite Green and Indigo Carmine. These preliminary results suggested that the nanobiocatalyst could be a suitable option for dye decolorization and be further developed for large scale bioremediation of toxic dyes.

5.
Biotechnol Lett ; 42(7): 1229-1236, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32107669

ABSTRACT

A stable biocatalyst with magnetic properties based on immobilized Lactobacillus animalis ATCC 35,046 to obtain 2-chloroadenine-2'-deoxyriboside, known as cladribine, is reported for the first time. This nucleoside analogue is an antitumor agent used in the treatment of a wide variety of types of leukemia. In this study, an eco-compatible and alternative bioprocess to obtain cladribine was developed. Product conversion was close to 90% at 2 h in optimized nonconventional reaction media. The microscale biosynthesis of the compound of interest afforded a total productivity close to 370 mg/L/h in the presence of DMSO, and it was stable at least for 30 days in storage conditions.


Subject(s)
Antineoplastic Agents/metabolism , Cells, Immobilized/metabolism , Cladribine/metabolism , Lactobacillus/metabolism , Alginates/chemistry , Bacterial Proteins/metabolism , Biotransformation , Dimethyl Sulfoxide/pharmacology , Lactobacillus/drug effects , Magnets , Pentosyltransferases/metabolism
6.
Methods Mol Biol ; 2100: 385-394, 2020.
Article in English | MEDLINE | ID: mdl-31939137

ABSTRACT

Microbial whole cells are efficient, ecological, and low-cost catalysts that have been successfully applied in the pharmaceutical, environmental, and alimentary industries, among others.Microorganism immobilization is a good way to carry out the bioprocess under preparative conditions. The main advantages of this methodology lie in their high operational stability, easy upstream separation, and bioprocess scale-up feasibility.Cell entrapment is the most widely used technique for whole cell immobilization. This technique-in which the cells are included within a rigid network-is porous enough to allow the diffusion of substrates and products, protects the selected microorganism from the reaction medium, and has high immobilization efficiency (100% in most cases).


Subject(s)
Biotechnology , Cells, Immobilized , Microbiological Techniques , Agar/chemistry , Alginates/chemistry , Biotechnology/methods , Catalysis , Chitosan/chemistry , Enzyme Stability , Hydrogen-Ion Concentration , Kinetics , Sepharose/chemistry
7.
Biotechnol Prog ; 36(2): e2927, 2020 03.
Article in English | MEDLINE | ID: mdl-31595721

ABSTRACT

Cladribine is a nucleoside analogue widely used in the pharmaceutical industry for the treatment of several neoplasms, including hairy-cell leukemia among others. This compound has also shown efficacy in the treatment of autoimmune diseases such as rheumatoid arthritis and multiple sclerosis. In this work, a green bioprocess for cladribine biosynthesis using immobilized Arthrobacter oxydans was developed. The microorganism was stabilized by entrapment immobilization in the natural matrix alginate. Different reaction parameters were optimized obtaining a biocatalyst able to achieve cladribine bioconversion values close to 85% after 1 hr, the shortest reaction times reported so far. The developed bioprocess was successfully scaled-up reaching a productivity of 138 mg L-1 hr-1 . Also, the biocatalyst was stable for 5 months in storage and in 96 hr at operational conditions.


Subject(s)
Alginates/chemistry , Antineoplastic Agents/metabolism , Cladribine/metabolism , Micrococcaceae/metabolism , Antineoplastic Agents/chemistry , Biocatalysis , Biotransformation , Cladribine/chemistry
8.
J Biotechnol ; 270: 39-43, 2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29355814

ABSTRACT

The 2'-N-deoxyribosyltransferases [NDT; EC 2.4.2.6] are a group of enzymes widely used as biocatalysts for nucleoside biosynthesis. In this work, the molecular cloning, expression and purification of a novel NDT from Lactobacillus animalis (LaNDT) have been reported. On the other hand, biocatalyst stability has been significantly enhanced by multipoint covalent immobilization using a hetero-functional support activated with nickel-chelates and glyoxyl groups. The immobilized enzyme could be reused for more than 300 h and stored during almost 3 months without activity loss. Besides, the obtained derivative (Ni2+-Gx-LaNDT) was able to biosynthesize 88 mg floxuridine/g biocatalyst after 1 h of reaction. In this work, a green bioprocess by employing an environmentally friendly methodology was developed, which allowed the obtaining of a compound with proven anti-tumor activity. Therefore, the obtained enzymatic biocatalyst meets the requirements of high activity, stability, and short reaction times needed for low-cost production in a future preparative application.


Subject(s)
Cloning, Molecular/drug effects , Enzymes, Immobilized/metabolism , Lactobacillus/enzymology , Transferases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Enzyme Stability , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/genetics , Lactobacillus/chemistry , Models, Molecular , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Transferases/chemistry , Transferases/genetics
9.
3 Biotech ; 7(6): 380, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29109925

ABSTRACT

Enzyme immobilization using hydrogels is a low-cost and effective system for the degradation of bulk pectin derived from orange industry residues. Polygalacturonases obtained from four different bacterial strains of Streptomyces genus were immobilized in alginate gel and assayed for pectin hydrolysis. The enzyme from Streptomyces halstedii ATCC 10897 proved to be superior and more stable within the alginate matrix. Furthermore, a new strategy to improve alginate bead stability using a mixture of calcium and strontium is reported; this technique allowed enhancing the mechanical properties by combining different amounts of these cations for ionotropic gelation. The developed biocatalyst showed maximum hydrolysis at 2 h, generating 1.54 mg/mL of reducing sugars and decreasing the viscosity of polygalacturonic acid by 98.9%. Reusability up to 29 successive reactions (58 h) demonstrated a very stable performance. The heterogeneous biocatalyst was used in the enzymatic saccharification of orange peel albedo (2.23 mg/mL) for adding value to this agro-waste by industrial exploitation.

10.
Medicina (B Aires) ; 77(3): 185-190, 2017.
Article in English | MEDLINE | ID: mdl-28643674

ABSTRACT

Shiga toxin (Stx)-producing Escherichia coli (STEC) infections are implicated in the development of the life-threatening hemolytic-uremic syndrome (HUS). Despite the magnitude of the social and economic problems caused by HUS, no licensed vaccine or effective therapy is currently available for human use. Prevention of STEC infections continues being the most important measure to reduce HUS incidence. This is especially true for Argentina where HUS incidence among children is extremely high and shows an endemic pattern. The aim of this work was to investigate serologically adult staff of kindergartens in Buenos Aires city and suburban areas in order to detect possible carriers, and to educate personnel about good practices to reduce HUS transmission. We also assessed the microbiological quality of water and meal samples from the same kindergartens. We tested 67 healthy adults, 13 water supplies and 6 meals belonging to 6 public kindergartens. We analysed hand swabs for isolation of STEC and serum samples for the presence of antibodies against Stx and lipopolysaccharide (LPS) of O157 serogroup. We identified 46 Stx2-positive individuals, but only 7 for O157 LPS. No presence of STEC pathogens was detected in hands of staff, water or meal samples.


Subject(s)
Escherichia coli Infections/prevention & control , Escherichia coli O157/isolation & purification , Hemolytic-Uremic Syndrome/microbiology , Hemolytic-Uremic Syndrome/prevention & control , Adult , Argentina/epidemiology , Child , Disease Outbreaks , Electrophoresis , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/transmission , Hemolytic-Uremic Syndrome/blood , Hemolytic-Uremic Syndrome/epidemiology , Humans , Risk Factors , Serotyping , Urban Population
11.
Medicina (B.Aires) ; 77(3): 185-190, jun. 2017. graf
Article in English | LILACS | ID: biblio-894455

ABSTRACT

Shiga toxin (Stx)-producing Escherichia coli (STEC) infections are implicated in the development of the life-threatening hemolytic-uremic syndrome (HUS). Despite the magnitude of the social and economic problems caused by HUS, no licensed vaccine or effective therapy is currently available for human use. Prevention of STEC infections continues being the most important measure to reduce HUS incidence. This is especially true for Argentina where HUS incidence among children is extremely high and shows an endemic pattern. The aim of this work was to investigate serologically adult staff of kindergartens in Buenos Aires city and suburban areas in order to detect possible carriers, and to educate personnel about good practices to reduce HUS transmission. We also assessed the microbiological quality of water and meal samples from the same kindergartens. We tested 67 healthy adults, 13 water supplies and 6 meals belonging to 6 public kindergartens. We analysed hand swabs for isolation of STEC and serum samples for the presence of antibodies against Stx and lipopolysaccharide (LPS) of O157 serogroup. We identified 46 Stx2-positive individuals, but only 7 for O157 LPS. No presence of STEC pathogens was detected in hands of staff, water or meal samples.


Las infecciones bacterianas con Escherichia coli productor de toxina Shiga (Stx) (STEC) están implicadas en el desarrollo del síndrome urémico hemolítico (SUH). A pesar de la magnitud del problema social y económico causado por el SUH, actualmente no existe un tratamiento específico o una vacuna eficaz para uso humano. Por lo tanto, la prevención de las infecciones por STEC es la tarea central para reducir la incidencia del SUH. Esto es especialmente cierto para Argentina en donde el SUH muestra un comportamiento endémico y presenta una incidencia extremadamente alta entre los niños. En efecto, la mediana de casos notificados en menores de 5 años para el periodo 2010-2015 fue 306, mientras que la tasa de notificación fue 8.5 casos cada 100 000 menores/año (http://www.msal.gob.ar/images/stories/boletines/boletin_integrado_vigilancia_N335-SE45.pdf). El objetivo de este trabajo fue analizar serológicamente al personal adulto de jardines de infantes de la ciudad de Buenos Aires y el área suburbana con el fin de detectar portadores, y brindarles formación sobre las buenas prácticas para reducir la transmisión de infecciones con STEC y así evitar el SUH. También se evaluó la calidad microbiológica de las muestras de agua y de la comida elaborada en los mismos jardines. Hemos estudiado 67 adultos, a través del hisopado de manos para la búsqueda de STEC y suero para la presencia de anticuerpos contra Stx y el lipopolisacárido (LPS) de serogrupo O157. También se analizaron 13 suministros de agua y 6 muestras de comida pertenecientes a 6 jardines de infantes públicos. Se identificaron 46 individuos positivos para Stx2, pero solo 7 para LPS-O157. No se detectó presencia de patógenos STEC en las muestras de las manos del personal, ni en los reservorios de agua o muestras de comida.


Subject(s)
Humans , Child , Adult , Escherichia coli O157/isolation & purification , Escherichia coli Infections/prevention & control , Hemolytic-Uremic Syndrome/microbiology , Hemolytic-Uremic Syndrome/prevention & control , Argentina/epidemiology , Urban Population , Serotyping , Disease Outbreaks , Risk Factors , Electrophoresis , Escherichia coli Infections/microbiology , Escherichia coli Infections/transmission , Escherichia coli Infections/epidemiology , Hemolytic-Uremic Syndrome/blood
12.
J Biotechnol ; 249: 34-41, 2017 May 10.
Article in English | MEDLINE | ID: mdl-28347766

ABSTRACT

Ribavirin is a synthetic guanosine analogue with a broad-spectrum of antiviral activity. It is clinically effective against several viruses, such as respiratory syncytial virus, several hemorrhagic fever viruses and HCV when combined with pegylated interferon-α. Phosphopentomutase (PPM) catalyzes the transfer of intramolecular phosphate (from C1 to C5) on ribose, and is involved in pentose phosphate pathway and in purine metabolism. Reactions catalyzed by this enzyme are useful for nucleoside analogues production. However, out of its natural environment PPM is unstable and its stability is affected by parameters such as pH and temperature. Therefore, to irreversibly immobilize this enzyme, it needs to be stabilized. In this work, PPM from Escherichia coli ATCC 4157 was overexpressed, purified, stabilized at alkaline pH and immobilized on several supports. The activity of different additives as stabilizing agents was evaluated, and the best result was found using 10% (v/v) glycerol. Under this condition, PPM maintained 86% of its initial activity at pH 10 after 18h incubation, which allowed further covalent immobilization of this enzyme on glyoxyl-agarose with a high yield. This is the first time that PPM has been immobilized by multipoint covalent attachment on glyoxyl support, this derivative being able to biosynthesize ribavirin from α-d-ribose-5-phosphate.


Subject(s)
Antiviral Agents/metabolism , Enzymes, Immobilized/metabolism , Escherichia coli Proteins/metabolism , Phosphotransferases/metabolism , Ribavirin/metabolism , Enzyme Stability , Enzymes, Immobilized/chemistry , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/isolation & purification , Excipients , Hydrogen-Ion Concentration , Models, Molecular , Phosphotransferases/chemistry , Phosphotransferases/genetics , Phosphotransferases/isolation & purification , Temperature
13.
Food Chem ; 208: 252-7, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27132847

ABSTRACT

Derivatized-agarose supports are suitable for enzyme immobilization by different methods, taking advantage of different physical, chemical and biological conditions of the protein and the support. In this study, agarose particles were modified with MANAE, PEI and glyoxyl groups and evaluated to stabilize polygalacturonase from Streptomyces halstedii ATCC 10897. A new immobilized biocatalyst was developed using glyoxyl-agarose as support; it exhibited high performance in degrading polygalacturonic acid and releasing oligogalacturonides. Maximal enzyme activity was detected at 5h of reaction using 0.05g/mL of immobilized biocatalyst, which released 3mg/mL of reducing sugars and allowed the highest product yield conversion and increased stability. These results are very favorable for pectin degradation with reusability up to 18 successive reactions (90h) and application in juice clarification. Plum (4.7°Bx) and grape (10.6°Bx) juices were successfully clarified, increasing reducing sugars content and markedly decreasing turbidity and viscosity.


Subject(s)
Food Handling/methods , Fruit and Vegetable Juices/analysis , Pectins/metabolism , Polygalacturonase/metabolism , Sepharose/chemistry , Enzyme Stability , Enzymes, Immobilized/chemistry , Fruit/chemistry , Fruit/enzymology , Glyoxylates/chemistry , Hydrogen-Ion Concentration , Polygalacturonase/chemistry , Prunus domestica/chemistry , Prunus domestica/enzymology , Vitis/chemistry , Vitis/enzymology
14.
Process Biochem ; 50(6): 935-940, 2015 Jun.
Article in English | MEDLINE | ID: mdl-32288593

ABSTRACT

Ribavirin is an antiviral compound widely used in Hepatitis C Virus therapy. Biotransformation of this nucleoside analogue using Escherichia coli ATCC 12407 as biocatalyst is herein reported. Reaction parameters such as microorganism amounts, substrate ratio and temperature were optimized reaching conversion yields of 86%. Biocatalyst stability was enhanced by immobilization in agarose matrix. This immobilized biocatalyst was able to be reused for more than 270 h and could be stored during more than 4 months without activity loss. Batch and packed-bed reactors based on a stabilized biocatalyst were assayed for bioprocess scale-up. A continuous sustainable bioprocess was evaluated using a prototype packed-bed reactor, which allowed to produce 95 mg of ribavirin. Finally, in this work an efficient green bioprocess for ribavirin bioproduction using a stabilized biocatalyst was developed.

15.
Methods Mol Biol ; 1051: 365-74, 2013.
Article in English | MEDLINE | ID: mdl-23934817

ABSTRACT

Microbial whole cells are efficient, ecological, and low-cost catalysts that have been successfully applied in the pharmaceutical, environmental, and alimentary industries, among others. Microorganism immobilization is a good way to carry out the bioprocess under preparative conditions. The main advantages of this methodology lie in their high operational stability, easy upstream separation and bioprocess scale-up feasibility. Cell entrapment is the most widely used technique for whole cell immobilization. This technique-in which the cells are included within a rigid network-is porous enough to allow the diffusion of substrates and products, protects the selected microorganism from the reaction medium, and has high immobilization efficiency (100 % in most cases).


Subject(s)
Bioreactors , Acrylic Resins/chemistry , Agar/chemistry , Alginates/chemistry , Bacteria/cytology , Biocatalysis , Cells, Immobilized/chemistry , Chitosan/chemistry , Gels/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Plant Oils/chemistry , Polymerization , Sepharose/chemistry , Sunflower Oil
16.
Bioorg Med Chem Lett ; 22(19): 6059-62, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22959520

ABSTRACT

This work describes the application of thermophilic microorganisms for obtaining 6-halogenated purine nucleosides. Biosynthesis of 6-chloropurine-2'-deoxyriboside and 6-chloropurine riboside was achieved by Geobacillus stearothermophilus CECT 43 with a conversion of 90% and 68%, respectively. Furthermore, the selected microorganism was satisfactorily stabilized by immobilization in an agarose matrix. This biocatalyst can be reused at least 70 times without significant loss of activity, obtaining 379mg/L of 6-chloropurine-2'-deoxyriboside. The obtained compounds can be used as antiviral agents.


Subject(s)
Antiviral Agents/metabolism , Geobacillus stearothermophilus/metabolism , Hepacivirus/drug effects , Purine Nucleosides/biosynthesis , Purine Nucleosides/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Geobacillus stearothermophilus/chemistry , Purine Nucleosides/chemistry , Temperature
17.
Biotechnol Prog ; 28(5): 1251-6, 2012.
Article in English | MEDLINE | ID: mdl-22837142

ABSTRACT

An efficient and green bioprocess to obtain 2,6-diaminopurine nucleosides using thermophilic bacteria is herein reported. Geobacillus stearothermophilus CECT 43 showed a conversion rate of 90 and 83% at 2 h to obtain 2,6-diaminopurine-2'-deoxyriboside and 2,6-diaminopurine riboside, respectively. The selected biocatalyst was successfully stabilized in an agarose matrix and used to produce up to 23.4 g of 2,6-diaminopurine-2'-deoxyriboside in 240 h of process. These nucleoside analogues can be used as prodrug precursors or in antisense oligonucleotide synthesis.


Subject(s)
2-Aminopurine/analogs & derivatives , Geobacillus stearothermophilus/metabolism , Nucleosides/metabolism , 2-Aminopurine/metabolism , Biotransformation , Cells, Immobilized/metabolism
18.
FEMS Microbiol Lett ; 331(1): 31-6, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22428623

ABSTRACT

This work describes an efficient, simple, and green bioprocess for obtaining 5-halogenated pyrimidine nucleosides from thymidine by transglycosylation using whole cells. Biosynthesis of 5-fluoro-2'-deoxyuridine (floxuridine) was achieved by free and immobilized Aeromonas salmonicida ATCC 27013 with an 80% and 65% conversion occurring in 1 h, respectively. The immobilized biocatalyst was stable for more than 4 months in storage conditions (4 °C) and could be reused at least 30 times without loss of its activity. This microorganism was able to biosynthesize 2.0 mg L(-1) min(-1) (60%) of 5-chloro-2'-deoxyuridine in 3 h. These halogenated pyrimidine 2'-deoxynucleosides are used as antitumoral agents.


Subject(s)
Aeromonas salmonicida/metabolism , Floxuridine/metabolism , Biotechnology/methods , Biotransformation , Cells, Immobilized/metabolism , Glycosylation , Thymidine/metabolism , Time Factors
19.
Chem Biodivers ; 1(2): 280-8, 2004 Feb.
Article in English | MEDLINE | ID: mdl-17191846

ABSTRACT

Different supports, such as alginate, agar, agarose, and polyacrylamide, were used to immobilize Escherichia coli BL 21 by entrapment techniques. The transglycosylation reaction involved in the synthesis of adenosine from uridine and adenine was chosen as a model system to study the characteristics of these biocatalysts. Whole cells immobilized on agarose proved to be optimal and could be used up to 30 times without significant loss of activity. This biocatalyst was further employed to test its ability in the synthesis of other adenine and hypoxanthine nucleosides. Ribo-, 2'-deoxyribo-, and arabinonucleosides could be prepared in high yields starting from the corresponding pyrimidine nucleosides and purine bases. Similar product yields were obtained with both free and immobilized cells, though, in the latter case, a longer reaction time was necessary.


Subject(s)
Adenine/biosynthesis , Escherichia coli Proteins/biosynthesis , Hypoxanthine/metabolism , Nucleosides/biosynthesis , Adenine/chemistry , Catalysis , Escherichia coli/chemistry , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Hypoxanthine/chemistry , Nucleosides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...