Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 94(8): 3645-3651, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35157430

ABSTRACT

Measurements of the ruthenium isotopic composition of nuclear samples could provide information about the method of sample production, sample irradiation history, and age. To investigate the feasibility and applicability of this idea, this study focuses on measurements of the ruthenium isotope composition of a nominally single-isotope 106Ru radioactivity standard, where the complications of environmental mixing are eliminated. The measurements of the 106Ru standards reveal unusual stable ruthenium isotopic compositions consistent with fissiogenic ruthenium. Three different lots of the material have been investigated, and the isotopic composition is found to be different for lot 1 as compared to lots 2 and 3, indicating a longer irradiation duration incurred during the production of lot 1. Through measurements of 106Ru and its 106Pd daughter, radiochronometry can be used to infer the ages of the samples. Lot 1 is older than lots 2 and 3 and was produced 4.91(5) years before the reference date of 1/1/21, approximately 2.7 years before lots 2 and 3. In an effort to better understand the sample production pathway, the isotopic measurements are compared with nuclear reactor simulations, which suggest that the material was generated by irradiation of a low-enriched uranium target material in a light water reactor. These findings have significant implications for nuclear treaty monitoring, providing an example of the power of ruthenium isotope measurements to discern details of sample origin and history.


Subject(s)
Ruthenium , Uranium , Isotopes , Reference Standards , Uranium/analysis
2.
Philos Trans A Math Phys Eng Sci ; 377(2137)2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30530532

ABSTRACT

Long-term monitoring of spent fuel stored in dry cask storage is currently achieved through the use of seals and surveillance. Muon tomography can provide direct imaging that may be useful in cases where what is known as Continuity of Knowledge (CoK) has been lost using the former methods. Over the past several years, a team from Los Alamos National Laboratory has been studying the use of muon scattering and stopping to examine spent fuel in dry cask storage. Data taken on a partially loaded Westinghouse MC-10 fuel cask have demonstrated that muon scattering radiography can detect missing fuel assemblies. A model, validated by this data, shows that tomographic reconstructions of the fuel can be obtained in relatively short exposures. Model fitting algorithms have been developed for dealing with datasets with limited angular that appear to work well. Here we show that muon tomography can provide a fingerprint of a loaded fuel cask, because of its sensitivity to both the density and atomic charge of the spent fuel, and that it is sensitive to many diversion scenarios.This article is part of the Theo Murphy meeting issue 'Cosmic-ray muography'.

3.
Forensic Sci Int ; 273: e1-e9, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28189344

ABSTRACT

Nuclear forensics techniques, including micro-XRF, gamma spectrometry, trace elemental analysis and isotopic/chronometric characterization were used to interrogate two, potentially related plutonium metal foils. These samples were submitted for analysis with only limited production information, and a comprehensive suite of forensic analyses were performed. Resulting analytical data was paired with available reactor model and historical information to provide insight into the materials' properties, origins, and likely intended uses. Both were super-grade plutonium, containing less than 3% 240Pu, and age-dating suggested that most recent chemical purification occurred in 1948 and 1955 for the respective metals. Additional consideration of reactor modeling feedback and trace elemental observables indicate plausible U.S. reactor origin associated with the Hanford site production efforts. Based on this investigation, the most likely intended use for these plutonium foils was 239Pu fission foil targets for physics experiments, such as cross-section measurements, etc.

SELECTION OF CITATIONS
SEARCH DETAIL
...