Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 95(18): 7178-7185, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37102678

ABSTRACT

Membrane proteins are vital in the human proteome for their cellular functions and make up a majority of drug targets in the U.S. However, characterizing their higher-order structures and interactions remains challenging. Most often membrane proteins are studied in artificial membranes, but such artificial systems do not fully account for the diversity of components present in cell membranes. In this study, we demonstrate that diethylpyrocarbonate (DEPC) covalent labeling mass spectrometry can provide binding site information for membrane proteins in living cells using membrane-bound tumor necrosis factor α (mTNFα) as a model system. Using three therapeutic monoclonal antibodies that bind TNFα, our results show that residues that are buried in the epitope upon antibody binding generally decrease in DEPC labeling extent. Additionally, serine, threonine, and tyrosine residues on the periphery of the epitope increase in labeling upon antibody binding because of a more hydrophobic microenvironment that is created. We also observe changes in labeling away from the epitope, indicating changes to the packing of the mTNFα homotrimer, compaction of the mTNFα trimer against the cell membrane, and/or previously uncharacterized allosteric changes upon antibody binding. Overall, DEPC-based covalent labeling mass spectrometry offers an effective means of characterizing structure and interactions of membrane proteins in living cells.


Subject(s)
Membrane Proteins , Tyrosine , Humans , Diethyl Pyrocarbonate/chemistry , Mass Spectrometry/methods , Cell Membrane , Protein Binding
2.
J Am Soc Mass Spectrom ; 33(7): 1303-1314, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35708229

ABSTRACT

Characterizing antibody-antigen interactions is necessary for properly developing therapeutic antibodies, understanding their mechanisms of action, and patenting new drug molecules. Here, we demonstrate that hydrogen-deuterium exchange (HDX) mass spectrometry (MS) measurements together with diethylpyrocarbonate (DEPC) covalent labeling (CL) MS measurements provide higher order structural information about antibody-antigen interactions that is not available from either technique alone. Using the well-characterized model system of tumor necrosis factor α (TNFα) in complex with three different monoclonal antibodies (mAbs), we show that two techniques offer a more complete overall picture of TNFα's structural changes upon binding different mAbs, sometimes providing synergistic information about binding sites and changes in protein dynamics upon binding. Labeling decreases in CL generally occur near the TNFα epitope, whereas decreases in HDX can span the entire protein due to substantial stabilization that occurs when mAbs bind TNFα. Considering both data sets together clarifies the TNFα regions that undergo a decrease in solvent exposure due to mAb binding and that undergo a change in dynamics due to mAb binding. Moreover, the single-residue level resolution of DEPC-CL/MS can clarify HDX/MS data for long peptides. We feel that the two techniques should be used together when studying the mAb-antigen interactions because of the complementary information they provide.


Subject(s)
Deuterium Exchange Measurement , Hydrogen , Antibodies, Monoclonal/chemistry , Deuterium , Deuterium Exchange Measurement/methods , Mass Spectrometry/methods , Tumor Necrosis Factor-alpha
3.
Anal Chem ; 94(2): 1052-1059, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34932327

ABSTRACT

Antigen-antibody epitope mapping is essential for understanding binding mechanisms and developing new protein therapeutics. In this study, we investigate diethylpyrocarbonate (DEPC) covalent labeling-mass spectrometry as a means of analyzing antigen-antibody interactions using the well-characterized model system of TNFα in complex with three different antibodies. Results show that residues buried in the epitope undergo substantial decreases in labeling, as expected. Interestingly, serine, threonine, and tyrosine residues at the edges of the epitope undergo unexpected increases in labeling. The increased labeling of these weakly nucleophilic residues is caused by the formation of hydrophobic pockets upon antibody binding that presumably increase local DEPC concentrations. Residues that are distant from the epitope generally do not undergo changes in labeling extent; however, some that do change experience variations in their local microenvironment due to side-chain reorganization or stabilization of the TNFα trimer that occurs upon binding. Overall, DEPC labeling of antigen-antibody complexes is found to depend on both changes in solvent exposure and changes to the residue microenvironment.


Subject(s)
Threonine , Tyrosine , Diethyl Pyrocarbonate/chemistry , Epitope Mapping , Mass Spectrometry/methods
4.
J Am Soc Mass Spectrom ; 32(5): 1237-1248, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33886284

ABSTRACT

Identifying changes in the higher-order structure (HOS) of therapeutic monoclonal antibodies upon storage, stress, or mishandling is important for ensuring efficacy and avoiding adverse effects. Here, we demonstrate diethylpyrocarbonate (DEPC)-based covalent labeling (CL) mass spectrometry (MS) and hydrogen-deuterium exchange (HDX)/MS can be used together to provide site-specific information about subtle conformational changes that are undetectable by traditional techniques. Using heat-stressed rituximab as a model protein, we demonstrate that CL/MS is more sensitive than HDX/MS to subtle HOS structural changes under low stress conditions (e.g., 45 and 55 °C for 4 h). At higher heat stress (65 °C for 4 h), we find CL/MS and HDX/MS provide complementary information, as CL/MS reports on changes in side chain orientation while HDX/MS reveals changes in backbone dynamics. More interestingly, we demonstrate that the two techniques work synergistically to identify likely aggregation sites in the heat-stressed protein. In particular, the CH3 and CL domains experience decreases in deuterium uptake after heat stress, while only the CH3 domain experiences decreases in DEPC labeling extent as well, suggesting the CH3 domain is a likely site of aggregation and the CL domain only undergoes a decrease in backbone dynamics. The combination of DEPC-CL/MS and HDX/MS provides valuable structural information, and the two techniques should be employed together when investigating the HOS of protein therapeutics.


Subject(s)
Hydrogen Deuterium Exchange-Mass Spectrometry/methods , Rituximab/chemistry , Antibodies/chemistry , Deuterium Exchange Measurement/methods , Diethyl Pyrocarbonate/chemistry , Hot Temperature , Protein Domains , Solvents/chemistry , Time Factors
5.
Biochemistry ; 59(44): 4294-4301, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33135889

ABSTRACT

Cells rely on protein degradation by AAA+ proteases. A well-known example is the hexameric ClpX unfoldase, which captures ATP hydrolysis to feed substrates into the oligomeric ClpP peptidase. Recent studies show that an asymmetric ClpX spiral cycles protein translocation upon ATP hydrolysis. However, how this cycle affects peptide products is less explored in part because ClpP cleavage is thought to be solely defined by sequence constraints. Here, we comprehensively characterize peptides from Caulobacter crescentus ClpXP degradation of three different substrates using high-resolution mass spectrometry and find that cleavage of translocated substrates is driven by factors other than sequence. We report that defined locations in a translocated protein are especially sensitive to cleavage spaced on average every 10-13 residues. These sites are not exclusively controlled by sequence and are independent of bulk changes in catalytic peptidase sites, ATP hydrolysis, or the efficiency of initial recognition. These results fit a model in which processive translocation through ClpX starts at a specific location in a polypeptide and pauses during reset of the ClpX hexamer after a cycle of translocation. Our work suggests that defined peptides, which could be used as signaling molecules, can be generated from a given substrate by a nonspecific peptidase.


Subject(s)
Caulobacter crescentus/enzymology , Endopeptidase Clp/metabolism , Proteolysis , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Endopeptidase Clp/chemistry , Hydrolysis , Models, Molecular , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...