Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Vaccine ; 35(2): 353-360, 2017 01 05.
Article in English | MEDLINE | ID: mdl-27916413

ABSTRACT

Enterotoxigenic Escherichia coli strains expressing F4 (K88) fimbriae (F4-ETEC) are one of the most important causes of post-weaning diarrhea (PWD) in pigs. F4, a major antigen, plays an important role in the early steps of the infection. Herein, the efficacy of a live oral vaccine consisting of a non-pathogenic E. coli strain expressing F4 for protection of pigs against PWD was evaluated. Three blinded, placebo-controlled, block design, parallel-group confirmatory experiments were conducted, using an F4-ETEC PWD challenge model, each with a different vaccination-challenge interval (3, 7, and 21days). The pigs were vaccinated via the drinking water with a single dose of the Coliprotec® F4 vaccine one day post-weaning. Efficacy was assessed by evaluating diarrhea, clinical observations, intestinal fluid accumulation, weight gain, intestinal colonization and fecal shedding of F4-ETEC. The immune response was evaluated by measuring serum and intestinal F4-specific antibodies. The administration of the vaccine resulted in a significant reduction of the incidence of moderate to severe diarrhea, ileal colonization by F4-ETEC, and fecal shedding of F4-ETEC after the heterologous challenge at 7 and 21days post-vaccination. The 7-day onset of protection was associated with an increase of serum anti-F4 IgM whereas the 21-day duration of protection was associated with an increase of both serum anti-F4 IgM and IgA. Significant correlations between levels of serum and intestinal secretory anti-F4 antibodies were detected. Maternally derived F4-specific serum antibodies did not interfere with the vaccine efficacy. The evaluation of protection following a challenge three days after vaccination showed a reduction of the severity and the duration of diarrhea and of fecal shedding of F4-ETEC. The 7-day onset and the 21-day duration of protection induced by Coliprotec® F4 vaccine administered once in drinking water to pigs of at least 18days of age were confirmed by protection against F4-ETEC and induction of F4-specific protective immunity.


Subject(s)
Diarrhea/veterinary , Enterotoxigenic Escherichia coli/immunology , Escherichia coli Infections/veterinary , Escherichia coli Vaccines/administration & dosage , Escherichia coli Vaccines/immunology , Swine Diseases/prevention & control , Administration, Oral , Animals , Antibodies, Bacterial/analysis , Antibodies, Bacterial/blood , Antibody Formation , Bacterial Shedding , Diarrhea/microbiology , Diarrhea/pathology , Diarrhea/prevention & control , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Escherichia coli Infections/prevention & control , Immunoglobulin A/blood , Immunoglobulin M/blood , Intestines/immunology , Placebos/administration & dosage , Serum/immunology , Swine , Swine Diseases/microbiology , Swine Diseases/pathology , Treatment Outcome , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology
2.
Int J Environ Res Public Health ; 10(9): 4245-60, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-24030654

ABSTRACT

The current study reports on contact interference of a high-level bacitracin- resistant pheromone-responsive plasmid of Enterococcus faecalis strain 543 of poultry origin during conjugative transfer of bcr antimicrobial resistance genes using a polyclonal antiserum aggregation substance(44-560) (AS). After induction with pheromones produced by the recipient strain E. faecalis JH2-2, clumping of the donor E. faecalis strain 543 was observed as well as high transfer frequencies of bcr in short time broth mating. Filter mating assays from donor strain E. faecalis 543 to the recipient strain E. faecalis JH2-2 revealed conjugative transfer of asa1 (AS), bcrRAB and traB (negative regulator pheromone response) genes. The presence of these genes in transconjugants was confirmed by antimicrobial susceptibility testing, PCR, Southern hybridization and sequencing. A significant reduction in formation of aggregates was observed when the polyclonal anti-AS(44-560) was added in the pheromone-responsive conjugation experiments as compared to the induced state. Moreover, interference of anti-AS(44-560) antibodies in pheromone-responsive conjugation was demonstrated by a reduction in horizontal transfer of asa1 and bcr genes between E. faecalis strain 543 and E. faecalis JH2-2. Reducing the pheromone-responsive conjugation of E. faecalis is of interest because of its clinical importance in the horizontal transfer of antimicrobial resistance.


Subject(s)
Chickens/microbiology , Drug Resistance, Bacterial/genetics , Enterococcus faecalis/genetics , Pheromones/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Bacitracin/pharmacology , Genes, Bacterial , Microbial Sensitivity Tests , Plasmids
3.
Front Microbiol ; 4: 245, 2013.
Article in English | MEDLINE | ID: mdl-23986753

ABSTRACT

Ampicillin-resistant Enterococcus faecium (ARE) has rapidly emerged worldwide and is one of the most important nosocomial pathogens. However, very few reports are available on ARE isolates from canine clinical cases. The objective of this study was to characterize ARE strains of canine clinical origin from a veterinary teaching hospital in Canada and to compare them with human strains. Ten ARE strains from dogs and humans were characterized by multilocus sequence typing (MLST), pulsed field gel electrophoresis (PFGE), antibiotic susceptibility and biofilm activities, presence of rep-families, CRISPR-cas and putative virulence genes. All ARE strains (n = 10) were resistant to ciprofloxacin and lincomycin. Resistances to tetracycline (n = 6), macrolides (n = 6), and to high concentrations of gentamicin, kanamycin and streptomycin (n = 5) were also observed. Canine ARE isolates were found to be susceptible to vancomycin whereas resistance to this antibiotic was observed in human strains. Ampicillin resistance was linked to PBP5 showing mutations at 25 amino acid positions. Fluoroquinolone resistance was attributable to ParC, GyrA, and GyrB mutations. Data demonstrated that all canine ARE were acm (collagen binding protein)-positive and that most harbored the efaAfm gene, encoding for a cell wall adhesin. Biofilm formation was observed in two human strains but not in canine strains. Two to five rep-families were observed per strain but no CRISPR sequences were found. A total of six STs (1, 18, 65, 202, 205, and 803) were found with one belonging to a new ST (ST803). These STs were identical or closely related to human hospital-associated lineages. This report describes for the first time the characterization of canine ARE hospital-associated strains in Canada and also supports the importance of prudent antibiotic use in veterinary medicine to avoid zoonotic spread of canine ARE.

4.
J Food Prot ; 75(9): 1595-602, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22947466

ABSTRACT

This study was conducted to determine plasmid colocalization and transferability of both erm(B) and tet(M) genes in Enterococcus faecalis isolates from abattoir pigs in Canada. A total of 124 E. faecalis isolates from cecal contents of abattoir pigs were examined for antibiotic susceptibility. High percentages of resistance to macrolides and tetracyclines were found. Two predominant multiresistance patterns of E. faecalis were examined by PCR and sequencing for the presence of genes encoding antibiotic resistance. Various combinations of antibiotic resistance genes were detected; erm(B) and tet(M) were the most common genes. Plasmid profiling and hybridization revealed that both genes were colocated on a ~9-kb transferable plasmid in six strains with the two predominant multiresistant patterns. Plasmid colocalization and cotransfer of tet(M) and erm(B) genes in porcine E. faecalis isolates indicates that antibiotic coselection and transferability could occur via this single genetic element. To our knowledge, this is the first report on plasmid colocalization and transferability of erm(B) and tet(M) genes in E. faecalis on a mobile genetic element of ~9 kb. Physical linkage between important antibiotic resistance determinants in enterococci is of interest for predicting potential transfer to other bacterial genera.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Enterococcus faecalis , Swine/microbiology , Abattoirs , Animals , Canada/epidemiology , Enterococcus faecalis/drug effects , Enterococcus faecalis/genetics , Enterococcus faecalis/isolation & purification , Food Microbiology , Gene Transfer, Horizontal , Genes, Bacterial , Microbial Sensitivity Tests
5.
J Food Prot ; 74(10): 1639-48, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22004810

ABSTRACT

This study was conducted to characterize the antimicrobial resistance determinants and investigate plasmid colocalization of tetracycline and macrolide genes in Enterococcus faecalis and Enterococcus faecium from broiler chicken and turkey flocks in Canada. A total of 387 E. faecalis and E. faecium isolates were recovered from poultry cecal contents from five processing plants. The percentages of resistant E. faecalis and E. faecium isolates, respectively, were 88.1 and 94% to bacitracin, 0 and 0.9% to chloramphenicol, 0.7 and 14.5% to ciprofloxacin, 72.6 and 80.3% to erythromycin, 3.7 and 41% to flavomycin, 9.6 and 4.3% (high-level resistance) to gentamicin, 25.2 and 17.1% (high-level resistance) to kanamycin, 100 and 94% to lincomycin, 0 and 0% to linezolid, 2.6 and 20.5% to nitrofurantoin, 3 and 27.4% to penicillin, 98.5 and 89.7% to quinupristin-dalfopristin, 7 and 12.8% to salinomycin, 46.7 and 38.5% (high-level resistance) to streptomycin, 95.6 and 89.7% to tetracycline, 73 and 75.2% to tylosin, and 0 and 0% to vancomycin. One predominant multidrug-resistant phenotypic pattern was identified in both E. faecalis and E. faecium (bacitracin, erythromycin, lincomycin, quinupristin-dalfopristin, tetracycline, and tylosin). These isolates were further examined by PCR and sequencing for the genes encoding their antimicrobial resistance. Various combinations of vatD, vatE, bcrR, bcrA, bcrB, bcrD, ermB, msrC, linB, tetM, and tetO genes were detected, and ermB, tetM, and bcrB were the most common antimicrobial resistance genes identified. For the first time, plasmid extraction and hybridization revealed colocalization of tetO and ermB genes on a ca. 11-kb plasmid in E. faecalis isolates, and filter mating experiments demonstrated its transferability. Results indicate that the intestinal enterococci of healthy poultry, which can contaminate poultry meat at slaughter, could be a reservoir for quinupristin-dalfopristin, bacitracin, tetracycline, and macrolide resistance genes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chickens/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Enterococcus faecalis/drug effects , Enterococcus faecium/drug effects , Turkeys/microbiology , Animals , Canada/epidemiology , Cecum/microbiology , Enterococcus faecalis/genetics , Enterococcus faecalis/isolation & purification , Enterococcus faecium/genetics , Enterococcus faecium/isolation & purification , Food Microbiology , Genes, Bacterial , Humans , Microbial Sensitivity Tests , Plasmids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...