Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(19): 13391-13398, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691098

ABSTRACT

Inverted p-i-n perovskite solar cells (PSCs) are easy to process but need improved interface characteristics with reduced energy loss to prevent efficiency drops when increasing the active photovoltaic area. Here, we report a series of poly ferrocenyl molecules that can modulate the perovskite surface enabling the construction of small- and large-area PSCs. We found that the perovskite-ferrocenyl interaction forms a hybrid complex with enhanced surface coordination strength and activated electronic states, leading to lower interfacial nonradiative recombination and charge transport resistance losses. The resulting PSCs achieve an enhanced efficiency of up to 26.08% for small-area devices and 24.51% for large-area devices (1.0208 cm2). Moreover, the large-area PSCs maintain >92% of the initial efficiency after 2000 h of continuous operation at the maximum power point under 1-sun illumination and 65 °C.

2.
J Biol Inorg Chem ; 28(8): 767-775, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37962611

ABSTRACT

The cellular accumulation and the underlying mechanisms for the two ruthenium-based anticancer complexes [RuII(cym)(HQ)Cl] 1 (cym = η6-p-cymene, HQ = 8-hydroxyquinoline) and [RuII(cym)(PCA)Cl]Cl 2 (PCA = N-fluorophenyl-2-pyridinecarbothioamide) were investigated in HCT116 human colorectal carcinoma cells. The results showed that the cellular accumulation of both complexes increased over time and with higher concentrations, and that 2 accumulates in greater quantities in cells than 1. Inhibition studies of selected cellular accumulation mechanisms indicated that both 1 and 2 may be transported into the cells by both passive diffusion and active transporters, similar to cisplatin. Efflux experiments indicated that 1 and 2 are subjected to efflux through a mechanism that does not involve p-glycoprotein, as addition of verapamil did not make any difference. Exploring the influence of the Cu transporter by addition of CuCl2 resulted in a higher accumulation of 1 and 2 whilst the amount of Pt detected was slightly reduced when cells were treated with cisplatin. Complexes 1 and 2 were further explored in zebrafish where accumulation and distribution were determined with ICP-MS and LA-ICP-MS. The results correlated with the in vitro observations and zebrafish treated with 2 showed higher Ru contents than those treated with 1. The distribution studies suggested that both complexes mainly accumulated in the intestines of the zebrafish.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ruthenium , Animals , Humans , Zebrafish , Cisplatin , Ruthenium/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Cell Line, Tumor
3.
Inorg Chem ; 62(8): 3616-3628, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36791401

ABSTRACT

Using ferrocene-based ligand systems, a series of heterobimetallic architectures of the general formula [PdmLn]x+ were designed with the aim of installing an opening and closing mechanism that would allow the release and binding of guest molecules. Palladium complex formation was achieved through coordination to pyridyl groups, and using 2-, 3-, and 4-pyridyl derivatives provided access to defined PdL, PdL2, and Pd2L4 structures, respectively. The supramolecular complexes were characterized using nuclear magnetic resonance (NMR) and infrared spectroscopy, mass spectrometry, and elemental analysis, and for some examples density functional theory calculations and single-crystal X-ray diffraction analysis. 1H NMR spectroscopy was used to investigate disassembly and reassembly of the metallosupramolecular structures. The former was induced by cleavage of the relatively labile Pd-Npyridyl bonds with the introduction of the competing ligands N,N'-dimethylaminopyridine (DMAP) and Cl- (using tetrabutylammonium chloride) to yield [Pd(DMAP)4]2+ and [PdCl4]2-, respectively. The process was found to be reversible for several of the heterodimetallic compounds, with the addition of H+ or Ag+ triggering complex reassembly. Guest binding studies with several architectures revealed interactions with the anionic guests p-toluenesulfonate and octyl sulfate, but not with neutral molecules. Furthermore, the release of guests was reversibly induced with Cl- ions as a stimulus.

4.
Metallomics ; 14(7)2022 07 25.
Article in English | MEDLINE | ID: mdl-35751650

ABSTRACT

Metal complexes bind to a wide variety of biomolecules and the control of the reactivity is essential when designing anticancer metallodrugs with a specific mode of action in mind. In this study, we used the highly cytotoxic compound [RuII(cym)(8-HQ)Cl] (cym = Î·6-p-cymene, 8-HQ = 8-hydroxyquinoline), the more inert derivative [RuII(cym)(8-HQ)(PTA)](SO3CF3) (PTA = 1,3,5-triaza-7-phosphaadamantane), and [RuII(cym)(PCA)Cl]Cl (PCA = pyridinecarbothioamide) as a complex with a different coordination environment about the Ru center and investigated their stability, interactions with proteins, and behavior in medium (αMEM) and human serum by capillary zone electrophoresis. The developed method was found to be robust and provides a quick and low-cost technique to monitor the interactions of such complexes with biomolecules. Each complex was found to behave very differently, emphasizing the importance of the choice of ligands and demonstrating the applicability of the developed method. Additionally, the human serum albumin binding site preference of [RuII(cym)(8-HQ)Cl] was investigated through displacement studies, revealing that the compound was able to bind to both sites I and site II, and the type of adducts formed with transferrin was determined by mass spectrometry.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ruthenium , Antineoplastic Agents/pharmacology , Blood Proteins , Cell Culture Techniques , Coordination Complexes/chemistry , Cymenes , Humans , Ruthenium/chemistry , Water/chemistry
7.
J Inorg Biochem ; 199: 110768, 2019 10.
Article in English | MEDLINE | ID: mdl-31357065

ABSTRACT

Organometallic compounds based on bioactive ligand systems have shown promising antiproliferative properties. The use of 8-hydroxyquinoline and its derivatives as bioactive ligands resulted in organometallic complexes with potent anticancer activity, but they lack aqueous solubility for further development. We report here the preparation of a series of MII/III(cym/Cp*)Cl complexes (η6-p-cymene (cym): M = Ru, Os; η5-pentamethylcyclopentadienyl (Cp*): M = Rh, Ir) with hydroxyquinoline-derived co-ligands and in a subsequent step the substitution of the chlorido ligands for amphiphilic 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1]decane (PTA). Solubility studies indicated that the introduced PTA ligand significantly improved the aqueous solubility of all complexes. The complexes were shown to be stable in aqueous and DMSO solution over a period of at least 3 d. As would be expected for such modification of complexes, the higher solubility resulted in significantly decreased cytotoxicity in cancer cells. The antiproliferative activity was still more pronounced than that of RAPTA-C [Ru(cym)(PTA)Cl] which, however, has been demonstrated to have antimetastatic and antiangiogenic properties in vivo.


Subject(s)
Organometallic Compounds/chemistry , Amino Acids/chemistry , Antineoplastic Agents , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Humans , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Organometallic Compounds/chemical synthesis , Peroxidase/chemistry , Peroxidase/genetics , Peroxidase/metabolism , Solubility , Water/chemistry
9.
Electrophoresis ; 39(9-10): 1201-1207, 2018 05.
Article in English | MEDLINE | ID: mdl-29400408

ABSTRACT

We present here the first comprehensive study on the lipophilicity of ruthenium anticancer agents encompassing compounds with broad structural diversity, ranging from octahedral RuIII (azole) through to RuII (arene) complexes. MEEKC was used to determine the capacity factors of the Ru complexes, and after a complex peak was unambiguously assigned using MEEKC-ICP-MS, the results were validated through comparison with the log P determined by octanol/water partitioning experiments. Correlation of the two data sets demonstrated a close relationship despite the limited structural overlap of the compounds studied. The capacity factors found by MEEKC allowed for the clustering of complexes based on their structure and this could be used to rationalize the observed cytotoxicity in the human colon carcinoma HCT116 cell line. It was demonstrated that rather than modification of the mono- or bidentate coordinated ligands much tighter control over a complexes lipophilic properties could be achieved through modification of the Ru(arene) ligand, with minimal detriment to cytotoxicity. This demonstrates the flexibility and potential of the Ru piano-stool scaffold. MEEKC proved to be a highly efficient means of screening the anticancer potential of preclinical ruthenium complex candidates for their lipophilic properties and correlate them with their biological activity and structural properties.


Subject(s)
Antineoplastic Agents/analysis , Antineoplastic Agents/chemistry , Mass Spectrometry/methods , Ruthenium , Cell Survival/drug effects , Coordination Complexes/analysis , Coordination Complexes/chemistry , Drug Screening Assays, Antitumor/methods , HCT116 Cells , Humans , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...