Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Lipid Res ; 65(6): 100558, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729350

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease is the most common form of liver disease and poses significant health risks to patients who progress to metabolic dysfunction-associated steatohepatitis. Fatty acid overload alters endoplasmic reticulum (ER) calcium stores and induces mitochondrial oxidative stress in hepatocytes, leading to hepatocellular inflammation and apoptosis. Obese mice have impaired liver sarco/ER Ca2+-ATPase (SERCA) function, which normally maintains intracellular calcium homeostasis by transporting Ca2+ ions from the cytoplasm to the ER. We hypothesized that restoration of SERCA activity would improve diet-induced steatohepatitis in mice by limiting ER stress and mitochondrial dysfunction. WT and melanocortin-4 receptor KO (Mc4r-/-) mice were placed on either chow or Western diet (WD) for 8 weeks. Half of the WD-fed mice were administered CDN1163 to activate SERCA, which reduced liver fibrosis and inflammation. SERCA activation also restored glucose tolerance and insulin sensitivity, improved histological markers of metabolic dysfunction-associated steatohepatitis, increased expression of antioxidant enzymes, and decreased expression of oxidative stress and ER stress genes. CDN1163 decreased hepatic citric acid cycle flux and liver pyruvate cycling, enhanced expression of mitochondrial respiratory genes, and shifted hepatocellular [NADH]/[NAD+] and [NADPH]/[NADP+] ratios to a less oxidized state, which was associated with elevated PUFA content of liver lipids. In sum, the data demonstrate that pharmacological SERCA activation limits metabolic dysfunction-associated steatotic liver disease progression and prevents metabolic dysfunction induced by WD feeding in mice.


Subject(s)
Liver , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Animals , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Mice , Liver/metabolism , Liver/pathology , Male , Fatty Liver/metabolism , Fatty Liver/pathology , Endoplasmic Reticulum Stress , Mice, Inbred C57BL , Oxidative Stress/drug effects , Diet, Western/adverse effects , Mice, Knockout
2.
J Leukoc Biol ; 115(2): 358-373, 2024 01 19.
Article in English | MEDLINE | ID: mdl-37793181

ABSTRACT

Exposure to pathogen-associated molecular patterns (PAMPs) induces an augmented, broad-spectrum antimicrobial response to subsequent infection, a phenomenon termed innate immune memory. This study examined the effects of treatment with ß-glucan, a fungus-derived dectin-1 ligand, or monophosphoryl lipid A (MPLA), a bacteria-derived Toll-like receptor 4 ligand, on innate immune memory with a focus on identifying common cellular and molecular pathways activated by these diverse PAMPs. Treatment with either PAMP prepared the innate immune system to respond more robustly to Pseudomonas aeruginosa infection in vivo by facilitating mobilization of innate leukocytes into blood, recruitment of leukocytes to the site of infection, augmentation of microbial clearance, and attenuation of cytokine production. Examination of macrophages ex vivo showed amplification of metabolism, phagocytosis, and respiratory burst after treatment with either agent, although MPLA more robustly augmented these activities and more effectively facilitated killing of bacteria. Both agents activated gene expression pathways in macrophages that control inflammation, antimicrobial functions, and protein synthesis and suppressed pathways regulating cell division. ß-glucan treatment minimally altered macrophage differential gene expression in response to lipopolysaccharide (LPS) challenge, whereas MPLA attenuated the magnitude of the LPS-induced transcriptional response, especially cytokine gene expression. These results show that ß-glucan and MPLA similarly augment the innate response to infection in vivo. Yet, MPLA more potently induces alterations in macrophage metabolism, antimicrobial functions, gene transcription and the response to LPS.


Subject(s)
Anti-Infective Agents , beta-Glucans , Lipopolysaccharides/pharmacology , Pathogen-Associated Molecular Pattern Molecules , Trained Immunity , Ligands , Cytokines , beta-Glucans/pharmacology , Bacteria , Immunity, Innate
3.
Metab Eng ; 79: 108-117, 2023 09.
Article in English | MEDLINE | ID: mdl-37473833

ABSTRACT

Chinese hamster ovary (CHO) cells are used extensively to produce protein therapeutics, such as monoclonal antibodies (mAbs), in the biopharmaceutical industry. MAbs are large proteins that are energetically demanding to synthesize and secrete; therefore, high-producing CHO cell lines that are engineered for maximum metabolic efficiency are needed to meet increasing demands for mAb production. Previous studies have identified that high-producing cell lines possess a distinct metabolic phenotype when compared to low-producing cell lines. In particular, it was found that high mAb production is correlated to lactate consumption and elevated TCA cycle flux. We hypothesized that enhancing flux through the mitochondrial TCA cycle and oxidative phosphorylation would lead to increased mAb productivities and final titers. To test this hypothesis, we overexpressed peroxisome proliferator-activated receptor γ co-activator-1⍺ (PGC-1⍺), a gene that promotes mitochondrial metabolism, in an IgG-producing parental CHO cell line. Stable cell pools overexpressing PGC-1⍺ exhibited increased oxygen consumption, indicating increased mitochondrial metabolism, as well as increased mAb specific productivity compared to the parental line. We also performed 13C metabolic flux analysis (MFA) to quantify how PGC-1⍺ overexpression alters intracellular metabolic fluxes, revealing not only increased TCA cycle flux, but global upregulation of cellular metabolic activity. This study demonstrates the potential of rationally engineering the metabolism of industrial cell lines to improve overall mAb productivity and to increase the abundance of high-producing clones in stable cell pools.


Subject(s)
Antibodies, Monoclonal , PPAR gamma , Cricetinae , Animals , Cricetulus , CHO Cells , PPAR gamma/metabolism , Antibodies, Monoclonal/genetics , Oxidative Stress , Immunoglobulin G
4.
Biotechnol Bioeng ; 119(7): 1712-1727, 2022 07.
Article in English | MEDLINE | ID: mdl-35312045

ABSTRACT

The glutamine synthetase (GS) expression system is commonly used to ensure stable transgene integration and amplification in Chinese hamster ovary (CHO) host lines. Transfected cell populations are typically grown in the presence of the GS inhibitor, methionine sulfoximine (MSX), to further select for increased transgene copy number. However, high levels of GS activity produce excess glutamine. We hypothesized that attenuating the GS promoter while keeping the strong IgG promoter on the GS-IgG expression vector would result in a more efficient cellular metabolic phenotype. Herein, we characterized CHO cell lines expressing GS from either an attenuated promoter or an SV40 promoter and selected with/without MSX. CHO cells with the attenuated GS promoter had higher IgG specific productivity and lower glutamine production compared to cells with SV40-driven GS expression. Selection with MSX increased both specific productivity and glutamine production, regardless of GS promoter strength. 13 C metabolic flux analysis (MFA) was performed to further assess metabolic differences between these cell lines. Interestingly, central carbon metabolism was unaltered by the attenuated GS promoter while the fate of glutamate and glutamine varied depending on promoter strength and selection conditions. This study highlights the ability to optimize the GS expression system to improve IgG production and reduce wasteful glutamine overflow, without significantly altering central metabolism. Additionally, a detailed supplementary analysis of two "lactate runaway" reactors provides insight into the poorly understood phenomenon of excess lactate production by some CHO cell cultures.


Subject(s)
Glutamate-Ammonia Ligase , Glutamine , Animals , CHO Cells , Cricetinae , Cricetulus , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Glutamine/metabolism , Immunoglobulin G/genetics , Lactic Acid/metabolism , Methionine Sulfoximine/metabolism , Methionine Sulfoximine/pharmacology
5.
Int J Mol Sci ; 21(21)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158035

ABSTRACT

Liver disease and disorders associated with aberrant hepatocyte metabolism can be initiated via drug and environmental toxicant exposures. In this study, we tested the hypothesis that gene and metabolic profiling can reveal commonalities in liver response to different toxicants and provide the capability to identify early signatures of acute liver toxicity. We used Sprague Dawley rats and three classical hepatotoxicants: acetaminophen (2 g/kg), bromobenzene (0.4 g/kg), and carbon tetrachloride (0.3 g/kg), to identify early perturbations in liver metabolism after a single acute exposure dose. We measured changes in liver genes and plasma metabolites at two time points (5 and 10 h) and used genome-scale metabolic models to identify commonalities in liver responses across the three toxicants. We found strong correlations for gene and metabolic profiles between the toxicants, indicative of similarities in the liver response to toxicity. We identified several injury-specific pathways in lipid and amino acid metabolism that changed similarly across the three toxicants. Our findings suggest that several plasma metabolites in lipid and amino acid metabolism are strongly associated with the progression of liver toxicity, and as such, could be targeted and clinically assessed for their potential as early predictors of acute liver toxicity.


Subject(s)
Amino Acids/metabolism , Chemical and Drug Induced Liver Injury/diagnosis , Hazardous Substances/pharmacology , Lipid Metabolism/drug effects , Metabolome/drug effects , Acetaminophen/pharmacology , Acetaminophen/toxicity , Acute Disease , Animals , Biomarkers/analysis , Biomarkers/metabolism , Bromobenzenes/pharmacology , Bromobenzenes/toxicity , Carbon Tetrachloride/pharmacology , Carbon Tetrachloride/toxicity , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Gene Expression Profiling , Hazardous Substances/toxicity , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Lipid Metabolism/genetics , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Metabolome/genetics , Metabolomics , Prognosis , Rats , Rats, Sprague-Dawley , Transcriptome/drug effects
6.
Toxicology ; 441: 152493, 2020 08.
Article in English | MEDLINE | ID: mdl-32479839

ABSTRACT

Early diagnosis of liver injuries caused by drugs or occupational exposures is necessary to enable effective treatments and prevent liver failure. Whereas histopathology remains the gold standard for assessing hepatotoxicity in animals, plasma aminotransferase levels are the primary measures for monitoring liver dysfunction in humans. In this study, using Sprague Dawley rats, we investigated whether integrated analyses of transcriptomic and metabolomic data with genome-scale metabolic models (GSMs) could identify early indicators of injury and provide new insights into the mechanisms of hepatotoxicity. We obtained concurrent measurements of gene-expression changes in the liver and kidneys, and expression changes along with metabolic profiles in the plasma and urine, from rats 5 or 10 h after exposing them to one of two classical hepatotoxicants, acetaminophen (2 g/kg) or bromobenzene (0.4 g/kg). Global multivariate analyses revealed that gene-expression changes in the liver and metabolic profiles in the plasma and urine of toxicant-treated animals differed from those of controls, even at time points much earlier than changes detected by conventional markers of liver injury. Furthermore, clustering analysis revealed that both the gene-expression changes in the liver and the metabolic profiles in the plasma induced by the two hepatotoxicants were highly correlated, indicating commonalities in the liver toxicity response. Systematic GSM-based analyses yielded metabolites associated with the mechanisms of toxicity and identified several lipid and amino acid metabolism pathways that were activated by both toxicants and those uniquely activated by each. Our findings suggest that several metabolite alterations, which are strongly associated with the mechanisms of toxicity and occur within injury-specific pathways (e.g., of bile acid and fatty acid metabolism), could be targeted and clinically assessed for their potential as early indicators of liver damage.


Subject(s)
Chemical and Drug Induced Liver Injury/blood , Acetaminophen/toxicity , Animals , Biomarkers/blood , Biomarkers/urine , Bromobenzenes/toxicity , Chemical and Drug Induced Liver Injury/diagnosis , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/urine , Gene Expression Profiling , Liver/drug effects , Liver/metabolism , Male , Metabolomics , Rats, Sprague-Dawley
7.
Proc Natl Acad Sci U S A ; 117(22): 12394-12401, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32414924

ABSTRACT

The bacterial pathogen Staphylococcus aureus is capable of infecting a broad spectrum of host tissues, in part due to flexibility of metabolic programs. S. aureus, like all organisms, requires essential biosynthetic intermediates to synthesize macromolecules. We therefore sought to determine the metabolic pathways contributing to synthesis of essential precursors during invasive S. aureus infection. We focused specifically on staphylococcal infection of bone, one of the most common sites of invasive S. aureus infection and a unique environment characterized by dynamic substrate accessibility, infection-induced hypoxia, and a metabolic profile skewed toward aerobic glycolysis. Using a murine model of osteomyelitis, we examined survival of S. aureus mutants deficient in central metabolic pathways, including glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, and amino acid synthesis/catabolism. Despite the high glycolytic demand of skeletal cells, we discovered that S. aureus requires glycolysis for survival in bone. Furthermore, the TCA cycle is dispensable for survival during osteomyelitis, and S. aureus instead has a critical need for anaplerosis. Bacterial synthesis of aspartate in particular is absolutely essential for staphylococcal survival in bone, despite the presence of an aspartate transporter, which we identified as GltT and confirmed biochemically. This dependence on endogenous aspartate synthesis derives from the presence of excess glutamate in infected tissue, which inhibits aspartate acquisition by S. aureus Together, these data elucidate the metabolic pathways required for staphylococcal infection within bone and demonstrate that the host nutrient milieu can determine essentiality of bacterial nutrient biosynthesis pathways despite the presence of dedicated transporters.


Subject(s)
Aspartic Acid/biosynthesis , Staphylococcal Infections/microbiology , Staphylococcus aureus/metabolism , Animals , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred C57BL , Nutrients/metabolism , Osteomyelitis/metabolism , Osteomyelitis/microbiology , Staphylococcal Infections/metabolism , Staphylococcus aureus/genetics
8.
J Lipid Res ; 61(5): 707-721, 2020 05.
Article in English | MEDLINE | ID: mdl-32086244

ABSTRACT

Fatty liver involves ectopic lipid accumulation and dysregulated hepatic oxidative metabolism, which can progress to a state of elevated inflammation and fibrosis referred to as nonalcoholic steatohepatitis (NASH). The factors that control progression from simple steatosis to NASH are not fully known. Here, we tested the hypothesis that dietary vitamin E (VitE) supplementation would prevent NASH progression and associated metabolic alterations induced by a Western diet (WD). Hyperphagic melanocortin-4 receptor-deficient (MC4R-/-) mice were fed chow, chow+VitE, WD, or WD+VitE starting at 8 or 20 weeks of age. All groups exhibited extensive hepatic steatosis by the end of the study (28 weeks of age). WD feeding exacerbated liver disease severity without inducing proportional changes in liver triglycerides. Eight weeks of WD accelerated liver pyruvate cycling, and 20 weeks of WD extensively upregulated liver glucose and oxidative metabolism assessed by 2H/13C flux analysis. VitE supplementation failed to reduce the histological features of NASH. Rather, WD+VitE increased the abundance and saturation of liver ceramides and accelerated metabolic flux dysregulation compared with 8 weeks of WD alone. In summary, VitE did not limit NASH pathogenesis in genetically obese mice, but instead increased some indicators of metabolic dysfunction.


Subject(s)
Diet, Western/adverse effects , Metabolic Flux Analysis , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/prevention & control , Vitamin E/pharmacology , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Drug Interactions , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Male , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Solubility
9.
Toxicol Sci ; 173(2): 293-312, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31722432

ABSTRACT

Identifying early indicators of toxicant-induced organ damage is critical to provide effective treatment. To discover such indicators and the underlying mechanisms of toxicity, we used gentamicin as an exemplar kidney toxicant and performed systematic perturbation studies in Sprague Dawley rats. We obtained high-throughput data 7 and 13 h after administration of a single dose of gentamicin (0.5 g/kg) and identified global changes in genes in the liver and kidneys, metabolites in the plasma and urine, and absolute fluxes in central carbon metabolism. We used these measured changes in genes in the liver and kidney as constraints to a rat multitissue genome-scale metabolic network model to investigate the mechanism of gentamicin-induced kidney toxicity and identify metabolites associated with changes in tissue gene expression. Our experimental analysis revealed that gentamicin-induced metabolic perturbations could be detected as early as 7 h postexposure. Our integrated systems-level analyses suggest that changes in kidney gene expression drive most of the significant metabolite alterations in the urine. The analyses thus allowed us to identify several significantly enriched injury-specific pathways in the kidney underlying gentamicin-induced toxicity, as well as metabolites in these pathways that could serve as potential early indicators of kidney damage.


Subject(s)
Gene Expression Profiling , Gentamicins/toxicity , Kidney/drug effects , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Metabolome/drug effects , Metabolome/genetics , Animals , Biomarkers/blood , Biomarkers/urine , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Male , Rats , Rats, Sprague-Dawley
10.
Front Physiol ; 10: 161, 2019.
Article in English | MEDLINE | ID: mdl-30881311

ABSTRACT

The liver-a central metabolic organ that integrates whole-body metabolism to maintain glucose and fatty-acid regulation, and detoxify ammonia-is susceptible to injuries induced by drugs and toxic substances. Although plasma metabolite profiles are increasingly investigated for their potential to detect liver injury earlier than current clinical markers, their utility may be compromised because such profiles are affected by the nutritional state and the physiological state of the animal, and by contributions from extrahepatic sources. To tease apart the contributions of liver and non-liver sources to alterations in plasma metabolite profiles, here we sought to computationally isolate the plasma metabolite changes originating in the liver during short-term fasting. We used a constraint-based metabolic modeling approach to integrate central carbon fluxes measured in our study, and physiological flux boundary conditions gathered from the literature, into a genome-scale model of rat liver metabolism. We then measured plasma metabolite profiles in rats fasted for 5-7 or 10-13 h to test our model predictions. Our computational model accounted for two-thirds of the observed directions of change (an increase or decrease) in plasma metabolites, indicating their origin in the liver. Specifically, our work suggests that changes in plasma lipid metabolites, which are reliably predicted by our liver metabolism model, are key features of short-term fasting. Our approach provides a mechanistic model for identifying plasma metabolite changes originating in the liver.

11.
Sci Rep ; 8(1): 11678, 2018 08 03.
Article in English | MEDLINE | ID: mdl-30076366

ABSTRACT

In order to provide timely treatment for organ damage initiated by therapeutic drugs or exposure to environmental toxicants, we first need to identify markers that provide an early diagnosis of potential adverse effects before permanent damage occurs. Specifically, the liver, as a primary organ prone to toxicants-induced injuries, lacks diagnostic markers that are specific and sensitive to the early onset of injury. Here, to identify plasma metabolites as markers of early toxicant-induced injury, we used a constraint-based modeling approach with a genome-scale network reconstruction of rat liver metabolism to incorporate perturbations of gene expression induced by acetaminophen, a known hepatotoxicant. A comparison of the model results against the global metabolic profiling data revealed that our approach satisfactorily predicted altered plasma metabolite levels as early as 5 h after exposure to 2 g/kg of acetaminophen, and that 10 h after treatment the predictions significantly improved when we integrated measured central carbon fluxes. Our approach is solely driven by gene expression and physiological boundary conditions, and does not rely on any toxicant-specific model component. As such, it provides a mechanistic model that serves as a first step in identifying a list of putative plasma metabolites that could change due to toxicant-induced perturbations.


Subject(s)
Acetaminophen/toxicity , Metabolic Networks and Pathways , Metabolome , Animals , Animals, Laboratory , Gene Expression Regulation/drug effects , Glycogenolysis/drug effects , Liver/drug effects , Liver/physiology , Male , Metabolic Flux Analysis , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Metabolome/drug effects , Metabolome/genetics , Pyruvates/metabolism , Rats, Sprague-Dawley
12.
Oncogene ; 37(36): 5007-5019, 2018 09.
Article in English | MEDLINE | ID: mdl-29789716

ABSTRACT

Many tumors increase uptake and dependence on glucose, cystine or glutamine. These basic observations on cancer cell metabolism have opened multiple new diagnostic and therapeutic avenues in cancer research. Recent studies demonstrated that smoking could induce the expression of xCT (SLC7A11) in oral cancer cells, suggesting that overexpression of xCT may support lung tumor progression. We hypothesized that overexpression of xCT occurs in lung cancer cells to satisfy the metabolic requirements for growth and survival. Our results demonstrated that 1) xCT was highly expressed at the cytoplasmic membrane in non-small cell lung cancer (NSCLC), 2) the expression of xCT was correlated with advanced stage and predicted a worse 5-year survival, 3) targeting xCT transport activity in xCT overexpressing NSCLC cells with sulfasalazine decreased cell proliferation and invasion in vitro and in vivo and 4) increased dependence on glutamine was observed in xCT overexpressed normal airway epithelial cells. These results suggested that xCT regulate metabolic requirements during lung cancer progression and be a potential therapeutic target in NSCLC.


Subject(s)
Amino Acid Transport System y+/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , 3T3 Cells , A549 Cells , Animals , Cell Line , Cell Line, Tumor , Cell Proliferation/physiology , Cell Survival/physiology , Cystine/metabolism , Cytoplasm/metabolism , Disease Progression , Female , Glutamine/metabolism , Humans , Male , Mice , Middle Aged
13.
J Immunol ; 200(11): 3777-3789, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29686054

ABSTRACT

Monophosphoryl lipid A (MPLA) is a clinically used TLR4 agonist that has been found to drive nonspecific resistance to infection for up to 2 wk. However, the molecular mechanisms conferring protection are not well understood. In this study, we found that MPLA prompts resistance to infection, in part, by inducing a sustained and dynamic metabolic program in macrophages that supports improved pathogen clearance. Mice treated with MPLA had enhanced resistance to infection with Staphylococcus aureus and Candida albicans that was associated with augmented microbial clearance and organ protection. Tissue macrophages, which exhibited augmented phagocytosis and respiratory burst after MPLA treatment, were required for the beneficial effects of MPLA. Further analysis of the macrophage phenotype revealed that early TLR4-driven aerobic glycolysis was later coupled with mitochondrial biogenesis, enhanced malate shuttling, and increased mitochondrial ATP production. This metabolic program was initiated by overlapping and redundant contributions of MyD88- and TRIF-dependent signaling pathways as well as downstream mTOR activation. Blockade of mTOR signaling inhibited the development of the metabolic and functional macrophage phenotype and ablated MPLA-induced resistance to infection in vivo. Our findings reveal that MPLA drives macrophage metabolic reprogramming that evolves over a period of days to support a macrophage phenotype highly effective at mediating microbe clearance and that this results in nonspecific resistance to infection.


Subject(s)
Macrophages/metabolism , Toll-Like Receptor 4/metabolism , Adenosine Triphosphate/metabolism , Animals , Candida albicans/drug effects , Candidiasis/drug therapy , Candidiasis/metabolism , Glycolysis/physiology , Lipid A/analogs & derivatives , Macrophages/microbiology , Male , Mice , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/metabolism , Signal Transduction/physiology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/metabolism , Staphylococcus aureus/drug effects , TOR Serine-Threonine Kinases/metabolism
14.
JCI Insight ; 1(19): e88814, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27882349

ABSTRACT

The molecular determinants of lung cancer risk remain largely unknown. Airway epithelial cells are prone to assault by risk factors and are considered to be the primary cell type involved in the field of cancerization. To investigate risk-associated changes in the bronchial epithelium proteome that may offer new insights into the molecular pathogenesis of lung cancer, proteins were identified in the airway epithelial cells of bronchial brushing specimens from risk-stratified individuals by shotgun proteomics. Differential expression of selected proteins was validated by parallel reaction monitoring mass spectrometry in an independent set of individual bronchial brushings. We identified 2,869 proteins, of which 312 proteins demonstrated a trend in expression. Pathway analysis revealed enrichment of carbohydrate metabolic enzymes in high-risk individuals. Glucose consumption and lactate production were increased in human bronchial epithelial BEAS2B cells treated with cigarette smoke condensate for 7 months. Increased lipid biosynthetic capacity and net reductive carboxylation were revealed by metabolic flux analyses of [U-13C5] glutamine in this in vitro model, suggesting profound metabolic reprogramming in the airway epithelium of high-risk individuals. These results provide a rationale for the development of potentially new chemopreventive strategies and selection of patients for surveillance programs.


Subject(s)
Epithelial Cells/metabolism , Proteome/analysis , Respiratory Mucosa/pathology , Smoke/adverse effects , Bronchi , Cell Line , Gene Expression Profiling , Humans , Lipid Metabolism , Lung Neoplasms/metabolism , Metabolomics , Respiratory Mucosa/cytology , Smoking
15.
Biochim Biophys Acta ; 1861(9 Pt A): 1005-1014, 2016 09.
Article in English | MEDLINE | ID: mdl-27249207

ABSTRACT

Experiments in a variety of cell types, including hepatocytes, consistently demonstrate the acutely lipotoxic effects of saturated fatty acids, such as palmitate (PA), but not unsaturated fatty acids, such as oleate (OA). PA+OA co-treatment fully prevents PA lipotoxicity through mechanisms that are not well defined but which have been previously attributed to more efficient esterification and sequestration of PA into triglycerides (TGs) when OA is abundant. However, this hypothesis has never been directly tested by experimentally modulating the relative partitioning of PA/OA between TGs and other lipid fates in hepatocytes. In this study, we found that addition of OA to PA-treated hepatocytes enhanced TG synthesis, reduced total PA uptake and PA lipid incorporation, decreased phospholipid saturation and rescued PA-induced ER stress and lipoapoptosis. Knockdown of diacylglycerol acyltransferase (DGAT), the rate-limiting step in TG synthesis, significantly reduced TG accumulation without impairing OA-mediated rescue of PA lipotoxicity. In both wild-type and DGAT-knockdown hepatocytes, OA co-treatment significantly reduced PA lipid incorporation and overall phospholipid saturation compared to PA-treated hepatocytes. These data indicate that OA's protective effects do not require increased conversion of PA into inert TGs, but instead may be due to OA's ability to compete against PA for cellular uptake and/or esterification and, thereby, normalize the composition of cellular lipids in the presence of a toxic PA load.


Subject(s)
Diacylglycerol O-Acyltransferase/genetics , Oleic Acid/metabolism , Palmitic Acid/metabolism , Triglycerides/biosynthesis , Animals , Apoptosis/genetics , Diacylglycerol O-Acyltransferase/metabolism , Esterification/genetics , Gene Knockout Techniques , Hepatocytes/metabolism , Lipid Metabolism/genetics , Lipogenesis/genetics , Oxidative Stress , Rats , Triglycerides/metabolism
16.
Mol Cell Proteomics ; 15(9): 2924-38, 2016 09.
Article in English | MEDLINE | ID: mdl-27340238

ABSTRACT

Metabolic reprogramming, in which altered utilization of glucose and glutamine supports rapid growth, is a hallmark of most cancers. Mutations in the oncogenes KRAS and BRAF drive metabolic reprogramming through enhanced glucose uptake, but the broader impact of these mutations on pathways of carbon metabolism is unknown. Global shotgun proteomic analysis of isogenic DLD-1 and RKO colon cancer cell lines expressing mutant and wild type KRAS or BRAF, respectively, failed to identify significant differences (at least 2-fold) in metabolic protein abundance. However, a multiplexed parallel reaction monitoring (PRM) strategy targeting 73 metabolic proteins identified significant protein abundance increases of 1.25-twofold in glycolysis, the nonoxidative pentose phosphate pathway, glutamine metabolism, and the phosphoserine biosynthetic pathway in cells with KRAS G13D mutations or BRAF V600E mutations. These alterations corresponded to mutant KRAS and BRAF-dependent increases in glucose uptake and lactate production. Metabolic reprogramming and glucose conversion to lactate in RKO cells were proportional to levels of BRAF V600E protein. In DLD-1 cells, these effects were independent of the ratio of KRAS G13D to KRAS wild type protein. A study of 8 KRAS wild type and 8 KRAS mutant human colon tumors confirmed the association of increased expression of glycolytic and glutamine metabolic proteins with KRAS mutant status. Metabolic reprogramming is driven largely by modest (<2-fold) alterations in protein expression, which are not readily detected by the global profiling methods most commonly employed in proteomic studies. The results indicate the superiority of more precise, multiplexed, pathway-targeted analyses to study functional proteome systems. Data are available through MassIVE Accession MSV000079486 at ftp://MSV000079486@massive.ucsd.edu.


Subject(s)
Colorectal Neoplasms/metabolism , Proteomics/methods , Proto-Oncogene Proteins B-raf/genetics , ras Proteins/genetics , Biosynthetic Pathways , Cell Line, Tumor , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Glucose/metabolism , Humans , Lactic Acid/metabolism , Mutation
17.
Diabetes ; 64(6): 2129-37, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25552595

ABSTRACT

A polymorphism located in the G6PC2 gene, which encodes an islet-specific glucose-6-phosphatase catalytic subunit, is the most important common determinant of variations in fasting blood glucose (FBG) levels in humans. Studies of G6pc2 knockout (KO) mice suggest that G6pc2 represents a negative regulator of basal glucose-stimulated insulin secretion (GSIS) that acts by hydrolyzing glucose-6-phosphate (G6P), thereby reducing glycolytic flux. However, this conclusion conflicts with the very low estimates for the rate of glucose cycling in pancreatic islets, as assessed using radioisotopes. We have reassessed the rate of glucose cycling in pancreatic islets using a novel stable isotope method. The data show much higher levels of glucose cycling than previously reported. In 5 mmol/L glucose, islets from C57BL/6J chow-fed mice cycled ∼16% of net glucose uptake. The cycling rate was further increased at 11 mmol/L glucose. Similar cycling rates were observed using islets from high fat-fed mice. Importantly, glucose cycling was abolished in G6pc2 KO mouse islets, confirming that G6pc2 opposes the action of the glucose sensor glucokinase by hydrolyzing G6P. The demonstration of high rates of glucose cycling in pancreatic islets explains why G6pc2 deletion enhances GSIS and why variants in G6PC2 affect FBG in humans.


Subject(s)
Glucose/metabolism , Islets of Langerhans/metabolism , Animals , Gas Chromatography-Mass Spectrometry , Glucose-6-Phosphatase/genetics , Glucose-6-Phosphatase/metabolism , In Vitro Techniques , Isotope Labeling , Mice , Mice, Inbred C57BL , Mice, Knockout
18.
Transplantation ; 85(3): 331-7, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18301328

ABSTRACT

BACKGROUND: Pancreatic islet transplantation has shown great success in the treatment of diabetic patients. However, the required immunosuppressive therapy exposes patients to serious side effects. METHODS: We have designed a novel five-component/three-membrane capsule and encapsulation system to protect the transplanted islet cells from immune system attack while allowing the influx of molecules and nutrients necessary for cell function/survival and efflux of the desired cellular product, specifically insulin, for making recipients healthy. RESULTS: We transplanted encapsulated canine pancreatic islets into the peritoneal cavity of pancreatectomized canines. Transplantation normalized fasting blood glucose levels in nine out of nine dogs for up to 214 days with a single transplantation. Retransplantation was assessed in three animals and encapsulated islets were effective in providing fasting glycemic control after the initial transplantation had run its course. No immunosuppression or anti-inflammatory therapy was used. CONCLUSION: This advancement in transplantation may lead to an alternative approach for islet transplantation treatment for diabetic patients. This approach may also benefit patients suffering from other hormone deficiency diseases including liver disease and Parkinson's disease.


Subject(s)
Diabetes Mellitus/surgery , Islets of Langerhans Transplantation/immunology , Islets of Langerhans Transplantation/methods , Pancreatectomy , Animals , Blood Glucose/metabolism , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Disease Models, Animal , Dogs , Female , Immunosuppression Therapy , Islets of Langerhans Transplantation/pathology , Male , Porosity , Transplantation, Homologous/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...