Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 28(52): e202201188, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-35762497

ABSTRACT

Single crystals of 2D coordination network {Cu2 L2 ⋅ (DMF)3 (H2 O)3 }n (1-DMF) were prepared by reaction of commercial reagents 3-formyl-4-hydroxybenzoic acid (H2 L) and Cu(NO3 )2 in dimethylformamide (DMF). The single-crystal structure shows two distinct Cu(II) coordination environments arising from the separate coordination of Cu(II) cations to the carboxylate and salicylaldehydato moieties on the linker, with 1D channels running through the structure. Flexibility is exhibited on solvent exchange with ethanol and tetrahydrofuran, while porosity and the unique overall connectivity of the structure are retained. The activated material exhibits type I gas sorption behaviour and a BET surface area of 950 m2 g-1 (N2 , 77 K). Notably, the framework adsorbs negligible quantities of CH4 compared with CO2 and the C2 Hn hydrocarbons. It exhibits exceptional selectivity for C2 H2 /CH4 and C2 H2 /C2 Hn , which has applicability in separation technologies for the isolation of C2 H2 .

2.
J Am Chem Soc ; 143(9): 3348-3358, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33625838

ABSTRACT

The desolvated (3,24)-connected metal-organic framework (MOF) material, MFM-160a, [Cu3(L)(H2O)3] [H6L = 1,3,5-triazine-2,4,6-tris(aminophenyl-4-isophthalic acid)], exhibits excellent high-pressure uptake of CO2 (110 wt% at 20 bar, 298 K) and highly selective separation of C2 hydrocarbons from CH4 at 1 bar pressure. Henry's law selectivities of 79:1 for C2H2:CH4 and 70:1 for C2H4:CH4 at 298 K are observed, consistent with ideal adsorption solution theory (IAST) predictions. Significantly, MFM-160a shows a selectivity of 16:1 for C2H2:CO2. Solid-state 2H NMR spectroscopic studies on partially deuterated MFM-160-d12 confirm an ultra-low barrier (∼2 kJ mol-1) to rotation of the phenyl group in the activated MOF and a rotation rate 5 orders of magnitude slower than usually observed for solid-state materials (1.4 × 106 Hz cf. 1011-1013 Hz). Upon introduction of CO2 or C2H2 into desolvated MFM-160a, this rate of rotation was found to increase with increasing gas pressure, a phenomenon attributed to the weakening of an intramolecular hydrogen bond in the triazine-containing linker upon gas binding. DFT calculations of binding energies and interactions of CO2 and C2H2 around the triazine core are entirely consistent with the 2H NMR spectroscopic observations.

SELECTION OF CITATIONS
SEARCH DETAIL
...