Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 129(9): 093402, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36083677

ABSTRACT

We investigate ultracold collisions in a novel mixture of ^{6}Li and ^{53}Cr fermionic atoms, discovering more than 50 interspecies Feshbach resonances via loss spectroscopy. Building a full coupled-channel model, we unambiguously characterize the ^{6}Li-^{53}Cr scattering properties and yield predictions for other isotopic pairs. In particular, we identify various Feshbach resonances that enable the controlled tuning of elastic s- and p-wave ^{6}Li-^{53}Cr interactions. Our studies thus make lithium-chromium mixtures emerge as optimally suited platforms for the experimental search of elusive few- and many-body regimes of highly correlated fermionic matter, and for the realization of a new class of ultracold polar molecules possessing both electric and magnetic dipole moments.

2.
Rev Sci Instrum ; 92(10): 105103, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34717387

ABSTRACT

We have implemented a control system core for experiments in atomic, molecular, and optical physics based on a commercial low-cost board, featuring a field-programmable gate array as part of a system-on-a-chip on which a Linux operating system is running. The board features Gigabit Ethernet, allowing for fast data transmission and operation of remote experimental systems. A single board can control a set of devices generating digital, analog, and radio frequency signals with precise timing given either by an external or internal clock. Contiguous output and input sampling rates of up to 40 MHz are achievable. Several boards can run synchronously with a timing error approaching 1 ns. For this purpose, a novel auto-synchronization scheme is demonstrated, with possible application in complex distributed experimental setups with demanding timing requests.

3.
Opt Express ; 27(19): 27215-27228, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31674587

ABSTRACT

Transmission of high power laser beams through partially absorbing materials modifies the light propagation via a thermally-induced effect known as thermal lensing. This may cause changes in the beam waist position and degrade the beam quality. Here we characterize the effect of thermal lensing associated with the different elements typically employed in an optical trapping setup for cold atoms experiments. We find that the only relevant thermal lens is represented by the TeO2 crystal of the acousto-optic modulator exploited to adjust the laser power on the atomic sample. We then devise a simple and totally passive scheme that enables to realize an inexpensive optical trapping apparatus essentially free from thermal lensing effects.

4.
Phys Rev Lett ; 118(23): 230403, 2017 Jun 09.
Article in English | MEDLINE | ID: mdl-28644648

ABSTRACT

We explore the interplay between tunneling and interatomic interactions in the dynamics of a bosonic Josephson junction. We tune the scattering length of an atomic ^{39}K Bose-Einstein condensate confined in a double-well trap to investigate regimes inaccessible to other superconducting or superfluid systems. In the limit of small-amplitude oscillations, we study the transition from Rabi to plasma oscillations by crossing over from attractive to repulsive interatomic interactions. We observe a critical slowing down in the oscillation frequency by increasing the strength of an attractive interaction up to the point of a quantum phase transition. With sufficiently large initial oscillation amplitude and repulsive interactions, the system enters the macroscopic quantum self-trapping regime, where we observe coherent undamped oscillations with a self-sustained average imbalance of the relative well population. The exquisite agreement between theory and experiments enables the observation of a broad range of many body coherent dynamical regimes driven by tunable tunneling energy, interactions and external forces, with applications spanning from atomtronics to quantum metrology.

5.
Nat Phys ; 12(9): 826-829, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27610189

ABSTRACT

Symmetry-breaking quantum phase transitions play a key role in several condensed matter, cosmology and nuclear physics theoretical models1-3. Its observation in real systems is often hampered by finite temperatures and limited control of the system parameters. In this work we report for the first time the experimental observation of the full quantum phase diagram across a transition where the spatial parity symmetry is broken. Our system is made of an ultra-cold gas with tunable attractive interactions trapped in a spatially symmetric double-well potential. At a critical value of the interaction strength, we observe a continuous quantum phase transition where the gas spontaneously localizes in one well or the other, thus breaking the underlying symmetry of the system. Furthermore, we show the robustness of the asymmetric state against controlled energy mismatch between the two wells. This is the result of hysteresis associated with an additional discontinuous quantum phase transition that we fully characterize. Our results pave the way to the study of quantum critical phenomena at finite temperature4, the investigation of macroscopic quantum tunneling of the order parameter in the hysteretic regime and the production of strongly quantum entangled states at critical points5.

6.
Nature ; 485(7400): 615-8, 2012 May 23.
Article in English | MEDLINE | ID: mdl-22660321

ABSTRACT

Ultracold Fermi gases with tunable interactions provide a test bed for exploring the many-body physics of strongly interacting quantum systems. Over the past decade, experiments have investigated many intriguing phenomena, and precise measurements of ground-state properties have provided benchmarks for the development of theoretical descriptions. Metastable states in Fermi gases with strong repulsive interactions represent an exciting area of development. The realization of such systems is challenging, because a strong repulsive interaction in an atomic quantum gas implies the existence of a weakly bound molecular state, which makes the system intrinsically unstable against decay. Here we use radio-frequency spectroscopy to measure the complete excitation spectrum of fermionic (40)K impurities resonantly interacting with a Fermi sea of (6)Li atoms. In particular, we show that a well-defined quasiparticle exists for strongly repulsive interactions. We measure the energy and the lifetime of this 'repulsive polaron', and probe its coherence properties by measuring the quasiparticle residue. The results are well described by a theoretical approach that takes into account the finite effective range of the interaction in our system. We find that when the effective range is of the order of the interparticle spacing, there is a substantial increase in the lifetime of the quasiparticles. The existence of such a long-lived, metastable many-body state offers intriguing prospects for the creation of exotic quantum phases in ultracold, repulsively interacting Fermi gases.

7.
Phys Rev Lett ; 106(11): 115304, 2011 Mar 18.
Article in English | MEDLINE | ID: mdl-21469874

ABSTRACT

We report on the expansion of an ultracold Fermi-Fermi mixture of (6)Li and (40)K under conditions of strong interactions controlled via an interspecies Feshbach resonance. We study the expansion of the mixture after release from the trap and, in a narrow magnetic-field range, we observe two phenomena related to hydrodynamic behavior. The common inversion of the aspect ratio is found to be accompanied by a collective effect where both species stick together and expand jointly despite of their widely different masses. Our work constitutes a major experimental step for a controlled investigation of the many-body physics of this novel strongly interacting quantum system.

8.
Phys Rev Lett ; 103(22): 223203, 2009 Nov 27.
Article in English | MEDLINE | ID: mdl-20366094

ABSTRACT

We investigate the collisional stability of a sample of 40K atoms immersed in a tunable spin mixture of 6Li atoms. In this three-component Fermi-Fermi mixture, we find very low loss rates in a wide range of interactions as long as molecule formation of 6Li is avoided. The stable fermionic mixture with two resonantly interacting spin states of one species together with another species is a promising system for a broad variety of phenomena in few- and many-body quantum physics.

9.
Phys Rev Lett ; 100(5): 053201, 2008 Feb 08.
Article in English | MEDLINE | ID: mdl-18352370

ABSTRACT

We report on the observation of Feshbach resonances in an ultracold mixture of two fermionic species, (6)Li and (40)K. The experimental data are interpreted using a simple asymptotic bound state model and full coupled channels calculations. This unambiguously assigns the observed resonances in terms of various s- and p-wave molecular states and fully characterizes the ground-state scattering properties in any combination of spin states.

SELECTION OF CITATIONS
SEARCH DETAIL
...