Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Chem ; 13(6): 540-548, 2021 06.
Article in English | MEDLINE | ID: mdl-33833446

ABSTRACT

The encoding of chemical compounds with amplifiable DNA tags facilitates the discovery of small-molecule ligands for proteins. To investigate the impact of stereo- and regiochemistry on ligand discovery, we synthesized a DNA-encoded library of 670,752 derivatives based on 2-azido-3-iodophenylpropionic acids. The library was selected against multiple proteins and yielded specific ligands. The selection fingerprints obtained for a set of protein targets of pharmaceutical relevance clearly showed the preferential enrichment of ortho-, meta- or para-regioisomers, which was experimentally verified by affinity measurements in the absence of DNA. The discovered ligands included novel selective enzyme inhibitors and binders to tumour-associated antigens, which enabled conditional chimeric antigen receptor T-cell activation and tumour targeting.


Subject(s)
Drug Delivery Systems , Immunoglobulin Variable Region/pharmacology , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Animals , Cell Line, Tumor , DNA/chemistry , Drug Discovery , Fluorescence , Gene Library , Humans , Immunoglobulin Variable Region/chemistry , Mice , Microscopy, Fluorescence , Neoplasms , Neoplasms, Experimental
3.
Adv Sci (Weinh) ; 7(22): 2001970, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33240760

ABSTRACT

A versatile and Lipinski-compliant DNA-encoded library (DEL), comprising 366 600 glutamic acid derivatives coupled to oligonucleotides serving as amplifiable identification barcodes is designed, constructed, and characterized. The GB-DEL library, constructed in single-stranded DNA format, allows de novo identification of specific binders against several pharmaceutically relevant proteins. Moreover, hybridization of the single-stranded DEL with a set of known protein ligands of low to medium affinity coupled to a complementary DNA strand results in self-assembled selectable chemical structures, leading to the identification of affinity-matured compounds.

4.
Cell Rep ; 32(8): 108068, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32846126

ABSTRACT

Using genome-wide radiogenetic profiling, we functionally dissect vulnerabilities of cancer cells to ionizing radiation (IR). We identify ERCC6L2 as a major determinant of IR response, together with classical DNA damage response genes and members of the recently identified shieldin and CTC1-STN1-TEN1 (CST) complexes. We show that ERCC6L2 contributes to non-homologous end joining (NHEJ), and it may exert this function through interactions with SFPQ. In addition to causing radiosensitivity, ERCC6L2 loss restores DNA end resection and partially rescues homologous recombination (HR) in BRCA1-deficient cells. As a consequence, ERCC6L2 deficiency confers resistance to poly (ADP-ribose) polymerase (PARP) inhibition in tumors deficient for both BRCA1 and p53. Moreover, we show that ERCC6L2 mutations are found in human tumors and correlate with a better overall survival in patients treated with radiotherapy (RT); this finding suggests that ERCC6L2 is a predictive biomarker of RT response.


Subject(s)
DNA End-Joining Repair/radiation effects , DNA Helicases/metabolism , Animals , Humans , Mice
5.
DNA Repair (Amst) ; 77: 96-108, 2019 05.
Article in English | MEDLINE | ID: mdl-30928893

ABSTRACT

DNA double-strand breaks (DSBs) induced by genotoxic agents can cause cell death or contribute to chromosomal instability, a major driving force of cancer. By contrast, Spo11-dependent DSBs formed during meiosis are aimed at generating genetic diversity. In eukaryotes, CtIP and the Mre11 nuclease complex are essential for accurate processing and repair of both unscheduled and programmed DSBs by homologous recombination (HR). Here, we applied bioinformatics and genetic analysis to identify Paramecium tetraurelia CtIP (PtCtIP), the smallest known Sae2/Ctp1/CtIP ortholog, as a key factor for the completion of meiosis and the recovery of viable sexual progeny. Using in vitro assays, we find that purified recombinant PtCtIP preferentially binds to double-stranded DNA substrates but does not contain intrinsic nuclease activity. Moreover, mutation of the evolutionarily conserved C-terminal 'RHR' motif abrogates DNA binding of PtCtIP but not its ability to functionally interact with Mre11. Translating our findings into mammalian cells, we provide evidence that disruption of the 'RHR' motif abrogates accumulation of human CtIP at sites of DSBs. Consequently, cells expressing the DNA binding mutant CtIPR837A/R839A are defective in DSB resection and HR. Collectively, our work highlights minimal structural requirements for CtIP protein family members to facilitate the processing of DSBs, thereby maintaining genome stability as well as enabling sexual reproduction.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Paramecium tetraurelia/genetics , Paramecium tetraurelia/physiology , Protozoan Proteins/metabolism , Sequence Homology, Amino Acid , Amino Acid Motifs , Amino Acid Sequence , Conserved Sequence , DNA, Protozoan/metabolism , Meiosis/genetics , Paramecium tetraurelia/metabolism , Protozoan Proteins/chemistry , Reproduction/genetics
6.
Front Oncol ; 9: 1388, 2019.
Article in English | MEDLINE | ID: mdl-31921645

ABSTRACT

DNA double-strand breaks (DSBs) are highly deleterious, with a single unrepaired DSB being sufficient to trigger cell death. Compared to healthy cells, cancer cells have a higher DSB burden due to oncogene-induced replication stress and acquired defects in DNA damage response (DDR) mechanisms. Consequently, hyperproliferating cancer cells rely on efficient DSB repair for their survival. Moreover, augmented DSB repair capacity is a major cause of radio- and chemoresistance and, ultimately, cancer recurrence. Although inherited DDR defects can predispose individuals to develop certain cancers, the very same vulnerability may be therapeutically exploited to preferentially kill tumor cells. A paradigm for DNA repair targeted therapy has emerged in cancers that exhibit mutations in BRCA1 or BRCA2 tumor suppressor genes, conferring a strong defect in homologous recombination, a major and error-free DSB repair pathway. Clinical validation of such approaches, commonly described as synthetic lethality (SL), has been provided by the regulatory approval of poly(ADP-ribose) polymerase 1 inhibitors (PARPi) as monotherapy for BRCA1/2-mutated breast and ovarian tumors. In this review, we will describe the different DSB repair mechanisms and discuss how their specific features could be exploited for cancer therapy. A major emphasis is put on advances in combinatorial treatment modalities and SL approaches arising from DSB repair pathway interdependencies.

7.
Mol Cell ; 72(3): 568-582.e6, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30344097

ABSTRACT

Protecting stalled DNA replication forks from degradation by promiscuous nucleases is essential to prevent genomic instability, a major driving force of tumorigenesis. Several proteins commonly associated with the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) have been implicated in the stabilization of stalled forks. Human CtIP, in conjunction with the MRE11 nuclease complex, plays an important role in HR by promoting DSB resection. Here, we report an unanticipated function for CtIP in protecting reversed forks from degradation. Unlike BRCA proteins, which defend nascent DNA strands from nucleolytic attack by MRE11, we find that CtIP protects perturbed forks from erroneous over-resection by DNA2. Finally, we uncover functionally synergistic effects between CtIP and BRCA1 in mitigating replication-stress-induced genomic instability. Collectively, our findings reveal a DSB-resection- and MRE11-independent role for CtIP in preserving fork integrity that contributes to the survival of BRCA1-deficient cells.


Subject(s)
Carrier Proteins/metabolism , Carrier Proteins/physiology , DNA Replication/physiology , Nuclear Proteins/metabolism , Nuclear Proteins/physiology , BRCA1 Protein , BRCA2 Protein , Cell Line , DNA Breaks, Double-Stranded , DNA Helicases/physiology , DNA Repair , DNA-Binding Proteins , Deoxyribonucleases , Endodeoxyribonucleases , Genomic Instability/physiology , Homologous Recombination/genetics , Humans , MRE11 Homologue Protein/metabolism , Protein Binding
8.
Mol Cancer Ther ; 17(7): 1392-1404, 2018 07.
Article in English | MEDLINE | ID: mdl-29654063

ABSTRACT

Under conditions of genotoxic stress, cancer cells strongly rely on efficient DNA repair to survive and proliferate. The human BRCA2 tumor suppressor protein is indispensable for the repair of DNA double-strand breaks by homologous recombination (HR) by virtue of its ability to promote RAD51 loading onto single-stranded DNA. Therefore, blocking the interaction between BRCA2 and RAD51 could significantly improve the efficacy of conventional anticancer therapies. However, targeting protein-protein interaction (PPI) interfaces has proven challenging because flat and large PPI surfaces generally do not support binding of small-molecule inhibitors. In contrast, peptides are more potent for targeting PPIs but are otherwise difficult to deliver into cells. Here, we report that a synthetic 16-mer peptide derived from the BRC4 repeat motif of BRCA2 is capable of blocking RAD51 binding to BRCA2. Efficient noncytotoxic cellular uptake of a nona-arginine (R9)-conjugated version of the BRC4 peptide interferes with DNA damage-induced RAD51 foci formation and HR. Moreover, transduction of the BRC4 peptide impairs replication fork-protective function of BRCA2 and triggers MRE11-dependent degradation of nascent DNA in response to DNA replication stress. Finally, the BRC4 cell-penetrating peptide (CPP) confers selective hypersensitivity to PARP inhibition in cancer cells but spares noncancerous cells. Taken together, our data highlight an innovative approach to develop novel peptide-based DNA repair inhibitors and establish BRCA2-derived CPPs as promising anticancer agents. Mol Cancer Ther; 17(7); 1392-404. ©2018 AACR.


Subject(s)
BRCA2 Protein/metabolism , Cell-Penetrating Peptides/pharmacology , Drug Resistance, Neoplasm/drug effects , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Rad51 Recombinase/metabolism , Amino Acid Sequence , BRCA2 Protein/chemistry , Cell Line, Tumor , Cell-Penetrating Peptides/chemistry , DNA Replication/drug effects , Homologous Recombination/drug effects , Humans , MRE11 Homologue Protein/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Protein Binding/drug effects , Proteolysis , Rad51 Recombinase/antagonists & inhibitors
9.
Nat Commun ; 7: 12628, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27561354

ABSTRACT

Human CtIP is a decisive factor in DNA double-strand break repair pathway choice by enabling DNA-end resection, the first step that differentiates homologous recombination (HR) from non-homologous end-joining (NHEJ). To coordinate appropriate and timely execution of DNA-end resection, CtIP function is tightly controlled by multiple protein-protein interactions and post-translational modifications. Here, we identify the Cullin3 E3 ligase substrate adaptor Kelch-like protein 15 (KLHL15) as a new interaction partner of CtIP and show that KLHL15 promotes CtIP protein turnover via the ubiquitin-proteasome pathway. A tripeptide motif (FRY) conserved across vertebrate CtIP proteins is essential for KLHL15-binding; its mutation blocks KLHL15-dependent CtIP ubiquitination and degradation. Consequently, DNA-end resection is strongly attenuated in cells overexpressing KLHL15 but amplified in cells either expressing a CtIP-FRY mutant or lacking KLHL15, thus impacting the balance between HR and NHEJ. Collectively, our findings underline the key importance and high complexity of CtIP modulation for genome integrity.


Subject(s)
Carrier Proteins/metabolism , DNA End-Joining Repair , Homologous Recombination/genetics , Microfilament Proteins/metabolism , Nuclear Proteins/metabolism , Ubiquitination/genetics , Carrier Proteins/genetics , Cell Line , Cullin Proteins/metabolism , DNA Breaks, Double-Stranded , Endodeoxyribonucleases , Humans , Mutation , Nuclear Proteins/genetics , Protein Interaction Domains and Motifs/genetics , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...