Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 118(3): 586-599, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31952801

ABSTRACT

The coordination of lipid messenger signaling with cytoskeletal regulation is central to many organelle-specific regulatory processes. This coupling often depends on the function of multidomain scaffolds that orchestrate transient interactions among multiple signaling intermediates and regulatory proteins on organelles. The number of possible scaffold interaction partners and the ability for these interactions to occur at different timescales makes investigations of scaffold functions challenging. This work employs live cell imaging to probe how the multidomain scaffold IQ motif containing GTPase activating protein 1 (IQGAP1) coordinates the activities of proteins affecting local actin polymerization, membrane processing, and phosphoinositide signaling. Using endosomes that are confined by a local actin network as a model system, we demonstrate that IQGAP1 can transition between different actin and endosomal membrane tethered states. Fast scaffold binding/disassociation transitions are shown to be driven by interactions between C-terminal scaffold domains and Rho GTPases at the membrane. Fluctuations in these binding modes are linked to negative regulation of actin polymerization. Although this control governs core elements of IQGAP1 dynamics, actin binding by the N-terminal calponin homology domain of the scaffold is shown to help the scaffold track the temporal development of endosome membrane markers, implying actin associations bolster membrane and actin coordination. Importantly, these effects are not easily distilled purely through standard (static) co-localization analyses or traditional pathway perturbations methods and were resolved by performing dynamic correlation and multiple regression analyses of IQGAP1 scaffold mutants. Using these capabilities with pharmacological inhibition, we provide evidence that membrane tethering is dependent on the activities of the lipid kinase phosphoinositide 3-kinase in addition to the Rho GTPases Rac1 and Cdc42. Overall, these methods and results point to a scaffold tethering mechanism that allows IQGAP1 to help control the amplitude of phosphoinositide lipid messenger signaling by coordinating signaling intermediate activities with the development and disassembly of local actin cytoskeletal networks.


Subject(s)
Actins , GTP Phosphohydrolases , ras GTPase-Activating Proteins , Humans , Lipids , Phosphatidylinositol 3-Kinases
2.
J Neurosurg Spine ; 32(2): 321-331, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31675701

ABSTRACT

OBJECTIVE: Despite significant improvement in spinal cord function after in utero spina bifida (SB) repair compared with traditional postnatal repair, over half of the children who undergo this procedure do not benefit completely. This lack of benefit has been attributed to closure methods of the defect, with subsequent spinal cord tethering at the repair site. Hence, a regenerative patch or material with antiinflammatory and anti-scarring properties may alleviate comorbidities with improved outcomes. The authors' primary objective was therefore to compare cryopreserved human umbilical cord (HUC) versus acellular dermal matrix (ADM) patches for regenerative repair of in utero SB lesions in an animal model. METHODS: In vivo studies were conducted in retinoic acid-induced SB defects in fetuses of Sprague-Dawley rats. HUC or ADM patches were sutured over the SB defects at a gestational age of 20 days. Repaired SB defect tissues were harvested after 48-52 hours. Tissue sections were immunofluorescently stained for the presence of neutrophils, macrophages, keratinocytes, meningeal cells, and astrocytes and for any associated apoptosis. In vitro meningeal or keratinocyte cell coculture experiments with the ADM and HUC patches were performed. All experiments were scored quantitatively in a blinded manner. RESULTS: Neutrophil counts and apoptotic cells were lower in the HUC-based repair group (n = 8) than in the ADM patch repair group (n = 7). In the HUC patch repair group, keratinocytes were present on the outer surface of the patch, meningeal cells were present on the inner surface of the patch adjacent to the neural placode, and astrocytes were noted to be absent. In the ADM patch repair group, all 3 cell types were present on both surfaces of the patch. In vitro studies showed that human meningeal cells grew preferentially on the mesenchymal side of the HUC patch, whereas keratinocytes showed tropism for the epithelial side, suggesting an inherent HUC-based cell polarity. In contrast, the ADM patch studies showed no polarity and decreased cellular infiltration. CONCLUSIONS: The HUC patch demonstrated reduced acute inflammation and apoptosis together with superior organization in regenerative cellular growth when compared with the ADM patch, and is therefore likely the better patch material for in utero SB defect repair. These properties may make the HUC biomaterial useful as a "meningeal patch" during spinal cord surgeries, thereby potentially reducing tethering and improving on spinal cord function.


Subject(s)
Neurosurgical Procedures , Spinal Cord/surgery , Spinal Dysraphism/surgery , Umbilical Cord/surgery , Animals , Disease Models, Animal , Female , Fetus/surgery , Humans , Pregnancy , Rats , Rats, Sprague-Dawley
3.
FASEB J ; 32(3): 1207-1221, 2018 03.
Article in English | MEDLINE | ID: mdl-29097501

ABSTRACT

Microtubules have long been implicated to play an integral role in metastatic disease, for which a critical step is the local invasion of tumor cells into the 3-dimensional (3D) collagen-rich stromal matrix. Here we show that cell migration of human cancer cells uses the dynamic formation of highly branched protrusions that are composed of a microtubule core surrounded by cortical actin, a cytoskeletal organization that is absent in cells on 2-dimensional (2D) substrates. Microtubule plus-end tracking protein End-binding 1 and motor protein dynein subunits light intermediate chain 2 and heavy chain 1, which do not regulate 2D migration, critically modulate 3D migration by affecting RhoA and thus regulate protrusion branching through differential assembly dynamics of microtubules. An important consequence of this observation is that the commonly used cancer drug paclitaxel is 100-fold more effective at blocking migration in a 3D matrix than on a 2D matrix. This work reveals the central role that microtubule dynamics plays in powering cell migration in a more pathologically relevant setting and suggests further testing of therapeutics targeting microtubules to mitigate migration.-Jayatilaka, H., Giri, A., Karl, M., Aifuwa, I., Trenton, N. J., Phillip, J. M., Khatau, S., Wirtz, D. EB1 and cytoplasmic dynein mediate protrusion dynamics for efficient 3-dimensional cell migration.


Subject(s)
Cell Culture Techniques/methods , Cell Movement , Cell Surface Extensions/physiology , Cytoplasmic Dyneins/metabolism , Fibrosarcoma/pathology , Microtubule-Associated Proteins/metabolism , Fibrosarcoma/metabolism , Humans , Microtubules/metabolism , Microtubules/pathology , Tumor Cells, Cultured
4.
Biol Open ; 6(6): 785-799, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28455356

ABSTRACT

IQGAP1 is a large, multi-domain scaffold that helps orchestrate cell signaling and cytoskeletal mechanics by controlling interactions among a spectrum of receptors, signaling intermediates, and cytoskeletal proteins. While this coordination is known to impact cell morphology, motility, cell adhesion, and vesicular traffic, among other functions, the spatiotemporal properties and regulatory mechanisms of IQGAP1 have not been fully resolved. Herein, we describe a series of super-resolution and live-cell imaging analyses that identified a role for IQGAP1 in the regulation of an actin cytoskeletal shell surrounding a novel membranous compartment that localizes selectively to the basal cortex of polarized epithelial cells (MCF-10A). We also show that IQGAP1 appears to both stabilize the actin coating and constrain its growth. Loss of compartmental IQGAP1 initiates a disassembly mechanism involving rapid and unconstrained actin polymerization around the compartment and dispersal of its vesicle contents. Together, these findings suggest IQGAP1 achieves this control by harnessing both stabilizing and antagonistic interactions with actin. They also demonstrate the utility of these compartments for image-based investigations of the spatial and temporal dynamics of IQGAP1 within endosome-specific actin networks.

5.
Oncotarget ; 7(50): 82482-82492, 2016 Dec 13.
Article in English | MEDLINE | ID: mdl-27756885

ABSTRACT

Inflammatory breast cancer (IBC) is a unique and deadly disease with unknown drivers. We hypothesized the inflammatory environment contributes to the IBC phenotype. We used an in vitro co-culture system to investigate interactions between normal and polarized macrophages (RAW 264.7 cell line), bone-marrow derived mesenchymal stem cells (MSCs), and IBC cells (SUM 149 and MDA-IBC3). We used an in vivo model that reproduces the IBC phenotype by co-injecting IBC cells with MSCs into the mammary fat pad. Mice were then treated with a macrophage recruitment inhibitor, anti-CSF1. MSC and macrophages grown in co-culture produced higher levels of pro-tumor properties such as enhanced migration and elevated IL-6 secretion. IBC cells co-cultured with educated MSCs also displayed enhanced invasion and mammosphere formation and blocked by anti-IL-6 and statin treatment. The treatment of mice co-injected with IBC cells and MSCs with anti-CSF1 inhibited tumor associated macrophages and inhibited pSTAT3 expression in tumor cells. Anti-CSF1 treated mice also exhibited reduced tumor growth, skin invasion, and local recurrence. Herein we demonstrate reciprocal tumor interactions through IL-6 with cells found in the IBC microenvironment. Our results suggest IL-6 is a mediator of these tumor promoting influences and is important for the IBC induced migration of MSCs.


Subject(s)
Breast Neoplasms/metabolism , Cell Movement , Inflammation/metabolism , Interleukin-6/metabolism , Macrophages/metabolism , Mesenchymal Stem Cells/metabolism , Paracrine Communication , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Coculture Techniques , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Inflammation/immunology , Inflammation/pathology , Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/drug effects , Macrophages/immunology , Mesenchymal Stem Cells/immunology , Mice , Mice, SCID , Neoplasm Invasiveness , Neoplasm Recurrence, Local , Phosphorylation , RAW 264.7 Cells , STAT3 Transcription Factor/metabolism , Signal Transduction , Time Factors , Tumor Burden , Tumor Microenvironment
6.
Breast Cancer Res Treat ; 154(3): 495-508, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26590814

ABSTRACT

We previously reported using statins was correlated with improved metastasis-free survival in aggressive breast cancer. The purpose of this study was to examine the effect of statins on metastatic colonization by triple-negative breast cancer (TNBC) cells. TNBC cell lines were treated with simvastatin and then studied for cell cycle progression and proliferation in vitro, and metastasis formation in vivo, following injection of statin-treated cells. Reverse-phase protein assay (RPPA) analysis was performed on statin-treated and control breast cancer cells. RNA interference targeting FOXO3a was used to measure the impact of simvastatin on FOXO3a-expressing cells. The prognostic value of FOXO3a mRNA expression was examined in eight public breast cancer gene expression datasets including 1479 patients. Simvastatin increased G1/S-phase arrest of the cell cycle and inhibited both proliferation and migration of TNBC cells in vitro. In vitro pre-treatment and in vivo treatment with simvastatin reduced metastases. Phosphorylated FOXO3a was downregulated after simvastatin treatment in (RPPA) analysis. Ectopic expression of FOXO3a enhanced mammosphere formation and migratory capacity in vitro. Knockdown of FOXO3a attenuated the effect of simvastatin on mammosphere formation and migration. Analysis of public gene expression data demonstrates FOXO3a mRNA downregulation was independently associated with shorter metastasis-free survival in all breast cancers, as well as in TNBC breast cancers. Simvastatin inhibits in vitro endpoints associated with metastasis through a FOXO3a mechanism and reduced metastasis formation in vivo. FOXO3a expression is prognostic for metastasis formation in patient data. Further investigation of simvastatin as a cancer therapy is warranted.


Subject(s)
Antineoplastic Agents/pharmacology , Forkhead Transcription Factors/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Simvastatin/pharmacology , Triple Negative Breast Neoplasms/pathology , Animals , Cell Line, Tumor/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , Forkhead Box Protein O3 , Forkhead Transcription Factors/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice, SCID , Middle Aged , Neoplasm Metastasis , Xenograft Model Antitumor Assays
7.
FASEB J ; 27(10): 4089-99, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23796785

ABSTRACT

Arp2/3 is a protein complex that nucleates actin filament assembly in the lamellipodium in adherent cells crawling on planar 2-dimensional (2D) substrates. However, in physiopathological situations, cell migration typically occurs within a 3-dimensional (3D) environment, and little is known about the role of Arp2/3 and associated proteins in 3D cell migration. Using time resolved live-cell imaging and HT1080, a fibrosarcoma cell line commonly used to study cell migration, we find that the Arp2/3 complex and associated proteins N-WASP, WAVE1, cortactin, and Cdc42 regulate 3D cell migration. We report that this regulation is caused by formation of multigeneration dendritic protrusions, which mediate traction forces on the surrounding matrix and effective cell migration. The primary protrusions emanating directly from the cell body and prolonging the nucleus forms independent of Arp2/3 and dependent on focal adhesion proteins FAK, talin, and p130Cas. The Arp2/3 complex, N-WASP, WAVE1, cortactin, and Cdc42 regulate the secondary protrusions branching off from the primary protrusions. In 3D matrices, fibrosarcoma cells as well as migrating breast, pancreatic, and prostate cancer cells do not display lamellipodial structures. This study characterizes the unique topology of protrusions made by cells in a 3D matrix and show that these dendritic protrusions play a critical role in 3D cell motility and matrix deformation. The relative contribution of these proteins to 3D migration is significantly different from their role in 2D migration.


Subject(s)
Actin-Related Protein 2-3 Complex/metabolism , Cell Movement/physiology , Cell Surface Extensions/physiology , Fibroblasts/cytology , Fibroblasts/physiology , Gene Expression Regulation, Neoplastic/physiology , Actin-Related Protein 2-3 Complex/genetics , Cell Line, Tumor , Humans , RNA, Small Interfering
SELECTION OF CITATIONS
SEARCH DETAIL
...