Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Exp Bot ; 51(342): 29-39, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10938793

ABSTRACT

Legumes obtain a substantial portion of their nitrogen (N) from symbiotic N2 fixation in root nodules. The glutamine synthetase (GS, EC 6.3.1.2)/glutamate synthase (GOGAT) cycle is responsible for the initial N assimilation. This report describes the analysis of a transgenic alfalfa (Medicago sativa L.) line containing an antisense NADH-GOGAT (EC 1.4.1.14) under the control of the nodule-enhanced aspartate amino-transferase (AAT-2) promoter. In one transgenic line, NADH-GOGAT enzyme activity was reduced to approximately 50%, with a corresponding reduction in protein and mRNA. The transcript abundance for cytosolic GS, ferredoxin-dependent GOGAT (EC 1.4.7.1), AAT-2 (EC 2.6.1.1), asparagine synthase (EC 6.3.5.4), and phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) were unaffected, as were enzyme activities for AAT, PEPC and GS. Antisense NADH-GOGAT plants grown under symbiotic conditions were moderately chlorotic and reduced in growth and N content, even though symbiotic N2 fixation was not significantly reduced. The addition of nitrate relieved the chlorosis and restored growth and N content. Surprisingly, the antisense NADH-GOGAT plants were male sterile resulting from inviable pollen. A reduction in NADH-GOGAT enzyme activity and transcript abundance in the antisense plants was measured during the early stages of flower development. Inheritance of the transgene was stable and resulted in progeny with a range of NADH-GOGAT activity. These data indicate that NADH-GOGAT plays a critical role in the assimilation of symbiotically fixed N and during pollen development.


Subject(s)
Antisense Elements (Genetics) , Glutamate Synthase/metabolism , Medicago sativa/enzymology , NAD/metabolism , Transformation, Genetic , Transgenes , Glutamate Synthase/genetics , Medicago sativa/genetics , Plant Roots/enzymology
2.
Plant Physiol ; 119(3): 817-28, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10069821

ABSTRACT

NADH-dependent glutamate synthase (NADH-GOGAT; EC 1.4.1.14) is a key enzyme in primary nitrogen assimilation in alfalfa (Medicago sativa L.) root nodules. Here we report that in alfalfa, a single gene, probably with multiple alleles, encodes for NADH-GOGAT. In situ hybridizations were performed to assess the location of NADH-GOGAT transcript in alfalfa root nodules. In wild-type cv Saranac nodules the NADH-GOGAT gene is predominantly expressed in infected cells. Nodules devoid of bacteroids (empty) induced by Sinorhizobium meliloti 7154 had no NADH-GOGAT transcript detectable by in situ hybridization, suggesting that the presence of the bacteroid may be important for NADH-GOGAT expression. The pattern of expression of NADH-GOGAT shifted during root nodule development. Until d 9 after planting, all infected cells appeared to express NADH-GOGAT. By d 19, a gradient of expression from high in the early symbiotic zone to low in the late symbiotic zone was observed. In 33-d-old nodules expression was seen in only a few cell layers in the early symbiotic zone. This pattern of expression was also observed for the nifH transcript but not for leghemoglobin. The promoter of NADH-GOGAT was evaluated in transgenic alfalfa plants carrying chimeric beta-glucuronidase promoter fusions. The results suggest that there are at least four regulatory elements. The region responsible for expression in the infected cell zone contains an 88-bp direct repeat.


Subject(s)
Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Medicago sativa/enzymology , Medicago sativa/genetics , Base Sequence , DNA Primers/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Genes, Plant , Glutamate Synthase (NADH) , In Situ Hybridization , Isoenzymes/genetics , Isoenzymes/metabolism , Medicago sativa/microbiology , Molecular Sequence Data , Plant Roots/enzymology , Plant Roots/growth & development , Plant Roots/microbiology , Plants, Genetically Modified , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Rhizobiaceae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL