Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Mass Spectrom ; 16(4): 553-64, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15792725

ABSTRACT

High performance liquid chromatography/mass spectrometry (HPLC/MS) has become a widely used technique for routine analysis of pharmaceutical compounds. The constant search for new drugs requires the development of time-efficient methods that can be employed in high-throughput screening of combinatorial libraries of a variety of compounds, including amines and peptides. Conventional HPLC/MS is a powerful technique that can easily be automated and is suitable for comprehensive screening purposes. However, the unequivocal determination of the presence and location of important carbamoyl protecting groups of amines is often elusive because of their inherent instability under MS conditions. In this study, the use of on-column H/D exchange HPLC/ESI/MS for structure elucidation of t-Boc protecting groups which can often not be detected by MS because of facile McLafferty rearrangement has been examined. We demonstrate that employing a deuterated mobile phase in HPLC/MS analysis provides a convenient tool for the determination of the absence or presence of t-Boc protecting groups in amines and peptides.


Subject(s)
Amines/chemistry , Chromatography, High Pressure Liquid , Combinatorial Chemistry Techniques , Dipeptides/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Indicators and Reagents , Peptide Library
2.
J Pharm Sci ; 94(3): 651-65, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15666296

ABSTRACT

Five polymorphic forms of tranilast were characterized by thermal, diffractometric, and spectroscopic techniques. The crystal structures of the most stable anhydrous form (Form I), a chloroform solvate, and a dichloromethane solvate were determined from single-crystal X-ray analysis. Two additional anhydrous forms of tranilast (Forms II and III) were also studied, but were not amenable to SCXRD. All five forms were also analyzed using solid-state nuclear magnetic resonance, Fourier transform infrared, and Fourier transform-Raman spectroscopy, and thermal methods. From the trends observed in the crystal structures and the spectral data, some conclusions can be made about hydrogen bonding, molecular conformation, and crystal packing differences in the polymorphs and solvates. Form II was found to be a spectroscopically distinctive polymorph that is probably missing an important intramolecular hydrogen bond coupled with a conformational change. In contrast, Form III was found to be more similar to the crystallographically characterized forms, and is more likely a packing and hydrogen-bonding polymorph with a weakened intermolecular hydrogen-bonding interaction relative to the other forms. From a pharmaceutical development perspective, it is shown that although the anhydrous forms of tranilast have similar thermal properties, they can be reliably distinguished by spectroscopic methods.


Subject(s)
ortho-Aminobenzoates/analysis , ortho-Aminobenzoates/chemistry , Chemistry, Pharmaceutical , Crystallization/methods , Hot Temperature , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Molecular Conformation , Solubility , Spectrophotometry, Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...