Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 82(24): 4654-4669, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36206317

ABSTRACT

Epithelial ovarian cancer (EOC) is the leading cause of gynecologic cancer death. Despite initial responses to intervention, up to 80% of patient tumors recur and require additional treatment. Retrospective clinical analysis of patients with ovarian cancer indicates antibiotic use during chemotherapy treatment is associated with poor overall survival. Here, we assessed whether antibiotic (ABX) treatment would impact growth of EOC and sensitivity to cisplatin. Immunocompetent or immunocompromised mice were given untreated control or ABX-containing (metronidazole, ampicillin, vancomycin, and neomycin) water prior to intraperitoneal injection with EOC cells, and cisplatin therapy was administered biweekly until endpoint. Tumor-bearing ABX-treated mice exhibited accelerated tumor growth and resistance to cisplatin therapy compared with control treatment. ABX treatment led to reduced apoptosis, increased DNA damage repair, and enhanced angiogenesis in cisplatin-treated tumors, and tumors from ABX-treated mice contained a higher frequency of cisplatin-augmented cancer stem cells than control mice. Stool analysis indicated nonresistant gut microbial species were disrupted by ABX treatment. Cecal transplants of microbiota derived from control-treated mice was sufficient to ameliorate chemoresistance and prolong survival of ABX-treated mice, indicative of a gut-derived tumor suppressor. Metabolomics analyses identified circulating gut-derived metabolites that were altered by ABX treatment and restored by recolonization, providing candidate metabolites that mediate the cross-talk between the gut microbiome and ovarian cancer. Collectively, these findings indicate that an intact microbiome functions as a tumor suppressor in EOC, and perturbation of the gut microbiota with ABX treatment promotes tumor growth and suppresses cisplatin sensitivity. SIGNIFICANCE: Restoration of the gut microbiome, which is disrupted following antibiotic treatment, may help overcome platinum resistance in patients with epithelial ovarian cancer. See related commentary by Hawkins and Nephew, p. 4511.


Subject(s)
Gastrointestinal Microbiome , Ovarian Neoplasms , Humans , Female , Mice , Animals , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/pathology , Cisplatin/therapeutic use , Retrospective Studies , Neoplasm Recurrence, Local/drug therapy , Ovarian Neoplasms/pathology , Anti-Bacterial Agents/pharmacology
2.
Front Cell Neurosci ; 13: 588, 2019.
Article in English | MEDLINE | ID: mdl-32038176

ABSTRACT

Demyelination of axons in the central nervous system (CNS) is a hallmark of multiple sclerosis (MS) and other demyelinating diseases. Cycles of demyelination, followed by remyelination, appear in the majority of MS patients and are associated with the onset and quiescence of disease-related symptoms, respectively. Previous studies in human patients and animal models have shown that vast demyelination is accompanied by wide-scale changes to brain activity, but details of this process are poorly understood. We used electrophysiological recordings and non-linear fluorescence imaging from genetically encoded calcium indicators to monitor the activity of hippocampal neurons during demyelination and remyelination over a period of 100 days. We found that synaptic transmission in CA1 neurons was diminished in vitro, and that neuronal firing rates in CA1 and the dentate gyrus (DG) were substantially reduced during demyelination in vivo, which partially recovered after a short remyelination period. This new approach allows monitoring how changes in synaptic transmission induced by cuprizone diet affect neuronal activity, and it can potentially be used to study the effects of therapeutic interventions in protecting the functionality of CNS neurons.

SELECTION OF CITATIONS
SEARCH DETAIL
...