Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 12(11): e9467, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36340815

ABSTRACT

Dual effects of spatial distance and environment shape archipelagic floras. In Malesia, there are multiple environmental stressors associated with increasing uplands, drought, and metal-rich ultramafic soils. Here, we examine the contrasting impacts of multifactorial environmental stress and spatial distance upon Lamiaceae species distributions. We used a phylogenetic generalized mixed effects model of species occurrence across Malesia's taxonomic database working group areas from Peninsular Malaysia to New Guinea. Predictor variables were environmental stress, spatial distance between areas and two trait principal component axes responsible for increasing fruit and leaf size and a negative correlation between flower size and plant height. We found that Lamiaceae species with smaller fruits and leaves are more likely to tolerate environmental stress and become widely distributed across megadiverse Malesian islands. How global species distribution and diversification are shaped by multifactorial environmental stress requires further examination.

2.
Nat Commun ; 13(1): 5031, 2022 09 12.
Article in English | MEDLINE | ID: mdl-36097018

ABSTRACT

Species radiations, despite immense phenotypic variation, can be difficult to resolve phylogenetically when genetic change poorly matches the rapidity of diversification. Genomic potential furnished by palaeopolyploidy, and relative roles for adaptation, random drift and hybridisation in the apportionment of genetic variation, remain poorly understood factors. Here, we study these aspects in a model radiation, Syzygium, the most species-rich tree genus worldwide. Genomes of 182 distinct species and 58 unidentified taxa are compared against a chromosome-level reference genome of the sea apple, Syzygium grande. We show that while Syzygium shares an ancient genome doubling event with other Myrtales, little evidence exists for recent polyploidy events. Phylogenomics confirms that Syzygium originated in Australia-New Guinea and diversified in multiple migrations, eastward to the Pacific and westward to India and Africa, in bursts of speciation visible as poorly resolved branches on phylogenies. Furthermore, some sublineages demonstrate genomic clines that recapitulate cladogenetic events, suggesting that stepwise geographic speciation, a neutral process, has been important in Syzygium diversification.


Subject(s)
Syzygium , Trees , Genetic Speciation , Genomics , Phylogeny , Syzygium/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...