Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
medRxiv ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38826420

ABSTRACT

Background: Major depressive disorder (MDD) is a prevalent and debilitating disorder that has been associated with a range of risk factors and outcomes. Causal pathways between MDD and other traits can be studied using genetic variants as instrumental variables. Methods: A literature review was conducted to identify 201 MDD-associated traits. For 115 traits, there were well-powered genome-wide association study (GWAS) results available that could be used to assess the genetic correlation with MDD. Of these, there were 89 meeting criteria for investigating causal associations in both directions using two-sample Mendelian randomization (TSMR). Of the traits that were not captured by GWAS, 43 could be included as outcomes of MDD using one-sample MR (OSMR). A range of methods and sensitivity tests was applied to gauge robustness of results, together with statistical power analyses to aid interpretation. Outcomes: Moderate to strong genetic overlap was found between MDD and most traits. Support for causal effects of MDD liability were found for circadian, cognitive, diet, medical disease, endocrine, functional, inflammatory, metabolic, mortality, physical activity, reproduction, risk behavior, social, socioeconomic, and suicide outcomes. Most associations were bidirectional, although there was less evidence for diet, disease, and endocrine traits causing MDD risk. Results were robust across sensitivity analyses. Interpretation: This study provides a systematic overview of traits putatively causally related to MDD, confirming previous findings as well as identifying new associations. Our results highlight the importance of MDD as a risk factor cross-cutting across medical, functional, and psychosocial domains and emphasize the need for concerted efforts at reducing this highly prevalent disorder.

2.
Mol Psychiatry ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811691

ABSTRACT

Substance use disorders represent a significant public health concern with considerable socioeconomic implications worldwide. Twin and family-based studies have long established a heritable component underlying these disorders. In recent years, genome-wide association studies of large, broadly phenotyped samples have identified regions of the genome that harbour genetic risk variants associated with substance use disorders. These regions have enabled the discovery of putative causal genes and improved our understanding of genetic relationships among substance use disorders and other traits. Furthermore, the integration of these data with clinical information has yielded promising insights into how individuals respond to medications, allowing for the development of personalized treatment approaches based on an individual's genetic profile. This review article provides an overview of recent advances in the genetics of substance use disorders and demonstrates how genetic data may be used to reduce the burden of disease and improve public health outcomes.

3.
medRxiv ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38562880

ABSTRACT

Background and Aims: Experiencing a traumatic event may lead to Posttraumatic Stress Disorder (PTSD), including symptoms such as flashbacks and hyperarousal. Individuals suffering from PTSD are at increased risk of cardiovascular disease (CVD), but it is unclear why. This study assesses shared genetic liability and potential causal pathways between PTSD and CVD. Methods: We leveraged summary-level data of genome-wide association studies (PTSD: N= 1,222,882; atrial fibrillation (AF): N=482,409; coronary artery disease (CAD): N=1,165,690; hypertension: N=458,554; heart failure (HF): N=977,323). First, we estimated genetic correlations and utilized genomic structural equation modeling to identify a common genetic factor for PTSD and CVD. Next, we assessed biological, behavioural, and psychosocial factors as potential mediators. Finally, we employed multivariable Mendelian randomization to examine causal pathways between PTSD and CVD, incorporating the same potential mediators. Results: Significant genetic correlations were found between PTSD and CAD, HT, and HF (rg =0.21-0.32, p≤ 3.08 · 10-16), but not between PTSD and AF. Insomnia, smoking, alcohol dependence, waist-to-hip ratio, and inflammation (IL6, C-reactive protein) partly mediated these associations. Mendelian randomization indicated that PTSD causally increases CAD (IVW OR=1.53, 95% CIs=1.19-1.96, p=0.001), HF (OR=1.44, CIs=1.08-1.92, p=0.012), and to a lesser degree hypertension (OR=1.25, CIs=1.05-1.49, p=0.012). While insomnia, smoking, alcohol, and inflammation were important mediators, independent causal effects also remained. Conclusions: In addition to shared genetic liability between PTSD and CVD, we present strong evidence for causal effects of PTSD on CVD. Crucially, we implicate specific lifestyle and biological mediators (insomnia, substance use, inflammation) which has important implications for interventions to prevent CVD in PTSD patients.

4.
Eur Addict Res ; : 1-9, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38626730

ABSTRACT

BACKGROUND: Traditional epidemiological evidence suggests various associations exist between alcohol and mental/cognitive health outcomes. However, whether these reflect causal relationships remains unclear. Mendelian randomization (MR) - a kind of instrumental variable analysis using genetic variants to proxy for an exposure of interest - has the potential to improve causal inference from observational data. SUMMARY: In the first part of this review, the challenges of causal inference in the field are discussed, and a theoretical and practical introduction to the technique of MR is given. Next, we report on literature searches performed to update a previous systematic review of MR studies evaluating alcohol-mental health relationships. Twelve relevant studies were identified and considered in the context of the 22 studies included in the previous review. While the reviewed MR literature suggests possible causal relationships/a lack thereof, for the most part, the nature of causal relationships between alcohol and mental health remains unclear. KEY MESSAGES: MR is beginning to yield valuable insights into the causal effects of (problematic) alcohol consumption on mental and cognitive health outcomes. Future studies must be mindful of the technique's underlying assumptions and should allow for potential nonlinearity in relationships. Triangulating across sensitivity methods within MR studies, as well as between MR studies and other methods for enhanced causal inference, will be crucial.

6.
Mol Psychiatry ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38355787

ABSTRACT

Individuals suffering from chronic pain develop substance use disorders (SUDs) more often than others. Understanding the shared genetic influences underlying the comorbidity between chronic pain and SUDs will lead to a greater understanding of their biology. Genome-wide association statistics were obtained from the UK Biobank for multisite chronic pain (MCP, Neffective = 387,649) and from the Million Veteran Program and the Psychiatric Genomics Consortium meta-analyses for alcohol use disorder (AUD, Neffective = 296,974), cannabis use disorder (CanUD, Neffective = 161,053), opioid use disorder (OUD, Neffective = 57,120), and problematic tobacco use (PTU, Neffective = 270,120). SNP-based heritability was estimated for each of the traits and genetic correlation (rg) analyses were performed to assess MCP-SUD pleiotropy. Bidirectional Mendelian Randomization analyses evaluated possible causal relationships. Finally, to identify and characterize individual loci, we performed a genome-wide pleiotropy analysis and a brain-wide analysis using imaging phenotypes available from the UK Biobank. MCP was positively genetically correlated with AUD (rg = 0.26, p = 7.55 × 10-18), CanUD (rg = 0.37, p = 8.21 × 10-37), OUD (rg = 0.20, p = 1.50 × 10-3), and PTU (rg = 0.29, p = 8.53 × 10-12). Although the MR analyses supported bi-directional relationships, MCP had larger effects on AUD (pain-exposure: beta = 0.18, p = 8.21 × 10-4; pain-outcome: beta = 0.07, p = 0.018), CanUD (pain-exposure: beta = 0.58, p = 2.70 × 10-6; pain-outcome: beta = 0.05, p = 0.014) and PTU (pain-exposure: beta = 0.43, p = 4.16 × 10-8; pain-outcome: beta = 0.09, p = 3.05 × 10-6) than the reverse. The genome-wide analysis identified two SNPs pleiotropic between MCP and all SUD investigated: IHO1 rs7652746 (ppleiotropy = 2.69 × 10-8), and CADM2 rs1248857 (ppleiotropy = 1.98 × 10-5). In the brain-wide analysis, rs7652746 was associated with multiple cerebellum and amygdala imaging phenotypes. When analyzing MCP pleiotropy with each SUD separately, we found 25, 22, and 4 pleiotropic variants for AUD, CanUD, and OUD, respectively. To our knowledge, this is the first large-scale study to provide evidence of potential causal relationships and shared genetic mechanisms underlying MCP-SUD comorbidity.

7.
medRxiv ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-37693619

ABSTRACT

Major depressive disorder (MDD) and cardiovascular disease (CVD) are often comorbid, resulting in excess morbidity and mortality. Using genomic data, this study elucidates biological mechanisms, key risk factors, and causal pathways underlying their comorbidity. We show that CVDs share a large proportion of their genetic risk factors with MDD. Multivariate genome-wide association analysis of the shared genetic liability between MDD and atherosclerotic CVD (ASCVD) revealed seven novel loci and distinct patterns of tissue and brain cell-type enrichments, suggesting a role for the thalamus. Part of the genetic overlap was explained by shared inflammatory, metabolic, and psychosocial/lifestyle risk factors. Finally, we found support for causal effects of genetic liability to MDD on CVD risk, but not from most CVDs to MDD, and demonstrated that the causal effects were partly explained by metabolic and psychosocial/lifestyle factors. The distinct signature of MDD-ASCVD comorbidity aligns with the idea of an immunometabolic sub-type of MDD more strongly associated with CVD than overall MDD. In summary, we identify plausible biological mechanisms underlying MDD-CVD comorbidity, as well as key modifiable risk factors for prevention of CVD in individuals with MDD.

8.
Neurosci Biobehav Rev ; 156: 105497, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38100958

ABSTRACT

Tobacco use and major depression are both leading contributors to the global burden of disease and are also highly comorbid. Previous research indicates bi-directional causality between tobacco use and depression, but the mechanisms that underlie this causality are unclear, especially for the causality from tobacco use to depression. Here we narratively review the available evidence for a potential causal role of gray matter volume in the association. We summarize the findings of large existing neuroimaging meta-analyses, studies in UK Biobank, and the Enhancing NeuroImaging Genetics through MetaAnalysis (ENIGMA) consortium and assess the overlap in implicated brain areas. In addition, we review two types of methods that allow us more insight into the causal nature of associations between brain volume and depression/smoking: longitudinal studies and Mendelian Randomization studies. While the available evidence suggests overlap in the alterations in brain volumes implicated in tobacco use and depression, there is a lack of research examining the underlying pathophysiology. We conclude with recommendations on (genetically-informed) causal inference methods useful for studying these associations.


Subject(s)
Depression , Gray Matter , Smoking , Humans , Depression/diagnostic imaging , Genome-Wide Association Study , Gray Matter/diagnostic imaging , Smoking/adverse effects
9.
Mol Psychiatry ; 28(11): 4594-4601, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37735503

ABSTRACT

Major depression (MD) is a serious psychiatric illness afflicting nearly 5% of the world's population. A large correlational literature suggests that loneliness is a prospective risk factor for MD; correlational assocations of this nature may be confounded for a variety of reasons. This report uses Mendelian Randomization (MR) to examine potentially causal associations between loneliness and MD. We report on analyses using summary statistics from three large genome wide association studies (GWAS). MR analyses were conducted using three independent sources of GWAS summary statistics. In the first set of analyses, we used available summary statistics from an extant GWAS of loneliness to predict MD risk. We used two sources of outcome data: the Psychiatric Genomics Consortium (PGC) meta-analysis of MD (PGC-MD; N = 142,646) and the Million Veteran Program (MVP-MD; N = 250,215). Finally, we reversed analyses using data from the MVP and PGC samples to identify risk variants for MD and used loneliness outcome data from UK Biobank. We find robust evidence for a bidirectional causal relationship between loneliness and MD, including between loneliness, depression cases status, and a continuous measure of depressive symptoms. The estimates remained significant across several sensitivity analyses, including models that account for horizontal pleiotropy. This paper provides the first genetically-informed evidence that reducing loneliness may play a causal role in decreasing risk for depressive illness, and these findings support efforts to reduce loneliness in order to prevent or ameliorate MD. Discussion focuses on the public health significance of these findings, especially in light of the SARS-CoV-2 pandemic.


Subject(s)
Depressive Disorder, Major , Genome-Wide Association Study , Humans , Depression/genetics , Loneliness , Mendelian Randomization Analysis , Prospective Studies , Depressive Disorder, Major/genetics
10.
medRxiv ; 2023 May 26.
Article in English | MEDLINE | ID: mdl-37292618

ABSTRACT

Background: An important contributor to the decreased life expectancy of individuals with schizophrenia is sudden cardiac death. While arrhythmic disorders play an important role in this, the nature of the relation between schizophrenia and arrhythmia is not fully understood. Methods: We leveraged summary-level data of large-scale genome-wide association studies of schizophrenia (53,386 cases 77,258 controls), arrhythmic disorders (atrial fibrillation, 55,114 cases 482,295 controls; Brugada syndrome, 2,820 cases 10,001 controls) and electrocardiogram traits (heart rate (variability), PR interval, QT interval, JT interval, and QRS duration, n=46,952-293,051). First, we examined shared genetic liability by assessing global and local genetic correlations and conducting functional annotation. Next, we explored bidirectional causal relations between schizophrenia and arrhythmic disorders and electrocardiogram traits using Mendelian randomization. Outcomes: There was no evidence for global genetic correlations, except between schizophrenia and Brugada (rg=0·14, p=4·0E-04). In contrast, strong positive and negative local genetic correlations between schizophrenia and all cardiac traits were found across the genome. In the strongest associated regions, genes related to immune system and viral response mechanisms were overrepresented. Mendelian randomization indicated a causal, increasing effect of liability to schizophrenia on Brugada syndrome (OR=1·15, p=0·009) and heart rate during activity (beta=0·25, p=0·015). Interpretation: While there was little evidence for global genetic correlations, specific genomic regions and biological pathways important for both schizophrenia and arrhythmic disorders and electrocardiogram traits emerged. The putative causal effect of liability to schizophrenia on Brugada warrants increased cardiac monitoring and potentially early medical intervention in patients with schizophrenia. Funding: European Research Council Starting Grant.

11.
BMC Med ; 21(1): 125, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37013617

ABSTRACT

BACKGROUND: Guidance to improve fertility includes reducing alcohol and caffeine consumption, achieving healthy weight-range and stopping smoking. Advice is informed by observational evidence, which is often biased by confounding. METHODS: This study primarily used data from a pregnancy cohort, the Norwegian Mother, Father and Child Cohort Study. First, we conducted multivariable regression of health behaviours (alcohol and caffeine consumption, body-mass index (BMI), and smoking) on fertility outcomes (e.g. time to conception) and reproductive outcomes (e.g. age at first birth) (n = 84,075 females, 68,002 males), adjusting for birth year, education and attention-deficit and hyperactive-impulsive (ADHD) traits. Second, we used individual-level Mendelian randomisation (MR) to explore possible causal effects of health behaviours on fertility/reproductive outcomes (n = 63,376 females, 45,460 males). Finally, we performed summary-level MR for available outcomes in UK Biobank (n = 91,462-1,232,091) and controlled for education and ADHD liability using multivariable MR. RESULTS: In multivariable regression analyses, higher BMI associated with fertility (longer time to conception, increased odds of infertility treatment and miscarriage), and smoking was associated with longer time to conception. In individual-level MR analyses, there was strong evidence for effects of smoking initiation and higher BMI on younger age at first birth, of higher BMI on increased time to conception, and weak evidence for effects of smoking initiation on increased time to conception. Age at first birth associations were replicated in summary-level MR analysis; however, effects attenuated using multivariable MR. CONCLUSIONS: Smoking behaviour and BMI showed the most consistent associations for increased time to conception and a younger age at first birth. Given that age at first birth and time to conception are positively correlated, this suggests that the mechanisms for reproductive outcomes are distinct to the mechanisms acting on fertility outcomes. Multivariable MR suggested that effects on age at first birth might be explained by underlying liability to ADHD and education.


Subject(s)
Mothers , Smoking , Pregnancy , Male , Female , Humans , Child , Cohort Studies , Smoking/adverse effects , Smoking/epidemiology , Caffeine , Fertility , Fathers , Health Behavior
13.
Int. j. clin. health psychol. (Internet) ; 23(1): 1-8, ene.-abr. 2023. ilus
Article in English | IBECS | ID: ibc-213097

ABSTRACT

Background: Worldwide, approximately 24% of all adults smoke, but smoking is up to twice as prevalent in people with mental ill-health. There is growing evidence that smoking may be a causal risk factor in the development of mental illness, and that smoking cessation leads to improved mental health. Methods: In this scholarly review we have: (1) used a modern adaptation of the Bradford-Hill criteria to bolster the argument that smoking could cause mental ill-health and that smoking cessation could reverse these effects, and (2) by considering psychological, biological, and environmental factors, we have structured the evidence to-date into a stress-diathesis model. Results: Our model suggests that smoking is a psychobiological stressor, but that the magnitude of this effect is mediated and modulated by the individual's diathesis to develop mental ill-health and other vulnerability and protective factors. We explore biological mechanisms that underpin the model, such as tobacco induced damage to neurological systems and oxidative stress pathways. Furthermore, we discuss evidence indicating that it is likely that these systems repair after smoking cessation, leading to better mental health. Conclusion: Based on a large body of literature including experimental, observational, and novel causal inference studies, there is consistent evidence showing that smoking can negatively affect the brain and mental health, and that smoking cessation could reverse the mental ill-health caused by smoking. Our model suggests that smoking prevention and treatment strategies have a role in preventing and treating mental illness as well as physical illness. (AU)


Subject(s)
Humans , Smoking Cessation , Tobacco Smoking , Mental Health , Tobacco Use Disorder , Stress, Psychological , Disease Susceptibility
14.
Int J Clin Health Psychol ; 23(1): 100335, 2023.
Article in English | MEDLINE | ID: mdl-36247407

ABSTRACT

Background: Worldwide, approximately 24% of all adults smoke, but smoking is up to twice as prevalent in people with mental ill-health. There is growing evidence that smoking may be a causal risk factor in the development of mental illness, and that smoking cessation leads to improved mental health. Methods: In this scholarly review we have: (1) used a modern adaptation of the Bradford-Hill criteria to bolster the argument that smoking could cause mental ill-health and that smoking cessation could reverse these effects, and (2) by considering psychological, biological, and environmental factors, we have structured the evidence to-date into a stress-diathesis model. Results: Our model suggests that smoking is a psychobiological stressor, but that the magnitude of this effect is mediated and modulated by the individual's diathesis to develop mental ill-health and other vulnerability and protective factors. We explore biological mechanisms that underpin the model, such as tobacco induced damage to neurological systems and oxidative stress pathways. Furthermore, we discuss evidence indicating that it is likely that these systems repair after smoking cessation, leading to better mental health. Conclusion: Based on a large body of literature including experimental, observational, and novel causal inference studies, there is consistent evidence showing that smoking can negatively affect the brain and mental health, and that smoking cessation could reverse the mental ill-health caused by smoking. Our model suggests that smoking prevention and treatment strategies have a role in preventing and treating mental illness as well as physical illness.

15.
Biol Psychiatry Glob Open Sci ; 2(4): 389-399, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36324656

ABSTRACT

Background: To gain more insight into the biological factors that mediate vulnerability to display externalizing behaviors, we leveraged genome-wide association study summary statistics on 13 externalizing phenotypes. Methods: After data classification based on genetic resemblance, we performed multivariate genome-wide association meta-analyses and conducted extensive bioinformatic analyses, including genetic correlation assessment with other traits, Mendelian randomization, and gene set and gene expression analyses. Results: The genetic data could be categorized into disruptive behavior (DB) and risk-taking behavior (RTB) factors, and subsequent genome-wide association meta-analyses provided association statistics for DB and RTB (N eff = 523,150 and 1,506,537, respectively), yielding 50 and 257 independent genetic signals. The statistics of DB, much more than RTB, signaled genetic predisposition to adverse cognitive, mental health, and personality outcomes. We found evidence for bidirectional causal influences between DB and substance use behaviors. Gene set analyses implicated contributions of neuronal cell development (DB/RTB) and synapse formation and transcription (RTB) mechanisms. Gene-brain mapping confirmed involvement of the amygdala and hypothalamus and highlighted other candidate regions (cerebellar dentate, cuneiform nucleus, claustrum, paracentral cortex). At the cell-type level, we noted enrichment of glutamatergic neurons for DB and RTB. Conclusions: This bottom-up, data-driven study provides new insights into the genetic signals of externalizing behaviors and indicates that commonalities in genetic architecture contribute to the frequent co-occurrence of different DBs and different RTBs, respectively. Bioinformatic analyses supported the DB versus RTB categorization and indicated relevant biological mechanisms. Generally similar gene-brain mappings indicate that neuroanatomical differences, if any, escaped the resolution of our methods.

16.
Transl Psychiatry ; 12(1): 489, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36411281

ABSTRACT

Cannabis is among the most widely consumed psychoactive substances worldwide. Individual differences in cannabis use phenotypes can partly be explained by genetic differences. Technical and methodological advances have increased our understanding of the genetic aetiology of cannabis use. This narrative review discusses the genetic literature on cannabis use, covering twin, linkage, and candidate-gene studies, and the more recent genome-wide association studies (GWASs), as well as the interplay between genetic and environmental factors. Not only do we focus on the insights that these methods have provided on the genetic aetiology of cannabis use, but also on how they have helped to clarify the relationship between cannabis use and co-occurring traits, such as the use of other substances and mental health disorders. Twin studies have shown that cannabis use is moderately heritable, with higher heritability estimates for more severe phases of use. Linkage and candidate-gene studies have been largely unsuccessful, while GWASs so far only explain a small portion of the heritability. Dozens of genetic variants predictive of cannabis use have been identified, located in genes such as CADM2, FOXP2, and CHRNA2. Studies that applied multivariate methods (twin models, genetic correlation analysis, polygenic score analysis, genomic structural equation modelling, Mendelian randomisation) indicate that there is considerable genetic overlap between cannabis use and other traits (especially other substances and externalising disorders) and some evidence for causal relationships (most convincingly for schizophrenia). We end our review by discussing implications of these findings and suggestions for future work.


Subject(s)
Cannabis , Schizophrenia , Genome-Wide Association Study , Cannabis/adverse effects , Cannabis/genetics , Multifactorial Inheritance , Schizophrenia/genetics , Phenotype
17.
Br J Psychiatry ; 221(1): 377-385, 2022 07.
Article in English | MEDLINE | ID: mdl-35049464

ABSTRACT

BACKGROUND: Structural variation in subcortical brain regions has been linked to substance use, including the most commonly used substances nicotine and alcohol. Pre-existing differences in subcortical brain volume may affect smoking and alcohol use, but there is also evidence that smoking and alcohol use can lead to structural changes. AIMS: We assess the causal nature of the complex relationship of subcortical brain volume with smoking and alcohol use, using bi-directional Mendelian randomisation. METHOD: Mendelian randomisation uses genetic variants predictive of a certain 'exposure' as instrumental variables to test causal effects on an 'outcome'. Because of random assortment at meiosis, genetic variants should not be associated with confounders, allowing less biased causal inference. We used summary-level data of genome-wide association studies of subcortical brain volumes (nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen and thalamus; n = 50 290) and smoking and alcohol use (smoking initiation, n = 848 460; cigarettes per day, n = 216 590; smoking cessation, n = 378 249; alcoholic drinks per week, n = 630 154; alcohol dependence, n = 46 568). The main analysis, inverse-variance weighted regression, was verified by a wide range of sensitivity methods. RESULTS: There was strong evidence that liability to alcohol dependence decreased amygdala and hippocampal volume, and smoking more cigarettes per day decreased hippocampal volume. From subcortical brain volumes to substance use, there was no or weak evidence for causal effects. CONCLUSIONS: Our findings suggest that heavy alcohol use and smoking can causally reduce subcortical brain volume. This adds to accumulating evidence that alcohol and smoking affect the brain, and likely mental health, warranting more recognition in public health efforts.


Subject(s)
Alcoholism , Substance-Related Disorders , Alcoholism/epidemiology , Brain/diagnostic imaging , Genome-Wide Association Study , Humans , Smoking/adverse effects
19.
Cardiovasc Res ; 118(7): 1742-1757, 2022 06 22.
Article in English | MEDLINE | ID: mdl-34142125

ABSTRACT

AIMS: Cardiac arrhythmias comprise a major health and economic burden and are associated with significant morbidity and mortality, including cardiac failure, stroke, and sudden cardiac death (SCD). Development of efficient preventive and therapeutic strategies is hampered by incomplete knowledge of disease mechanisms and pathways. Our aim is to identify novel mechanisms underlying cardiac arrhythmia and SCD using an unbiased approach. METHODS AND RESULTS: We employed a phenotype-driven N-ethyl-N-nitrosourea mutagenesis screen and identified a mouse line with a high incidence of sudden death at young age (6-9 weeks) in the absence of prior symptoms. Affected mice were found to be homozygous for the nonsense mutation Bcat2p.Q300*/p.Q300* in the Bcat2 gene encoding branched chain amino acid transaminase 2. At the age of 4-5 weeks, Bcat2p.Q300*/p.Q300* mice displayed drastic increase of plasma levels of branch chain amino acids (BCAAs-leucine, isoleucine, valine) due to the incomplete catabolism of BCAAs, in addition to inducible arrhythmias ex vivo as well as cardiac conduction and repolarization disturbances. In line with these findings, plasma BCAA levels were positively correlated to electrocardiogram indices of conduction and repolarization in the German community-based KORA F4 Study. Isolated cardiomyocytes from Bcat2p.Q300*/p.Q300* mice revealed action potential (AP) prolongation, pro-arrhythmic events (early and late afterdepolarizations, triggered APs), and dysregulated calcium homeostasis. Incubation of human pluripotent stem cell-derived cardiomyocytes with elevated concentration of BCAAs induced similar calcium dysregulation and pro-arrhythmic events which were prevented by rapamycin, demonstrating the crucial involvement of mTOR pathway activation. CONCLUSIONS: Our findings identify for the first time a causative link between elevated BCAAs and arrhythmia, which has implications for arrhythmogenesis in conditions associated with BCAA metabolism dysregulation such as diabetes, metabolic syndrome, and heart failure.


Subject(s)
Calcium , Heart Failure , Amino Acids, Branched-Chain/metabolism , Animals , Humans , Mice , Myocytes, Cardiac/metabolism , Sirolimus
20.
Schizophr Bull ; 48(2): 463-473, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34730178

ABSTRACT

Individuals with schizophrenia have a reduced life-expectancy compared to the general population, largely due to an increased risk of cardiovascular disease (CVD). Clinical and epidemiological studies have been unable to unravel the nature of this relationship. We obtained summary-data of genome-wide-association studies of schizophrenia (N = 130 644), heart failure (N = 977 323), coronary artery disease (N = 332 477), systolic and diastolic blood pressure (N = 757 601), heart rate variability (N = 46 952), QT interval (N = 103 331), early repolarization and dilated cardiomyopathy ECG patterns (N = 63 700). We computed genetic correlations and conducted bi-directional Mendelian randomization (MR) to assess causality. With multivariable MR, we investigated whether causal effects were mediated by smoking, body mass index, physical activity, lipid levels, or type 2 diabetes. Genetic correlations between schizophrenia and CVD were close to zero (-0.02-0.04). There was evidence that liability to schizophrenia causally increases heart failure risk. This effect remained consistent with multivariable MR. There was also evidence that liability to schizophrenia increases early repolarization pattern, largely mediated by BMI and lipids. Finally, there was evidence that liability to schizophrenia increases heart rate variability, a direction of effect contrasting clinical studies. There was weak evidence that higher systolic blood pressure increases schizophrenia risk. Our finding that liability to schizophrenia increases heart failure is consistent with the notion that schizophrenia involves a systemic dysregulation of the body with detrimental effects on the heart. To decrease cardiovascular mortality among individuals with schizophrenia, priority should lie with optimal treatment in early stages of psychosis.


Subject(s)
Cardiovascular Diseases/complications , Schizophrenia/physiopathology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/psychology , Correlation of Data , Genetic Testing/methods , Genetic Testing/statistics & numerical data , Humans , Mendelian Randomization Analysis/methods , Mendelian Randomization Analysis/statistics & numerical data , Schizophrenia/diagnosis , Schizophrenia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...