Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 293(25): 9685-9695, 2018 06 22.
Article in English | MEDLINE | ID: mdl-29752406

ABSTRACT

Prostaglandin (PG) E2 is an important lipid mediator that is involved in several pathophysiological processes contributing to fever, inflammation, and pain. Previous studies have shown that early and continuous application of nonsteroidal anti-inflammatory drugs significantly reduces pain behavior in the spared nerve injury (SNI) model for trauma-induced neuropathic pain. However, the role of PGE2 and its receptors in the development and maintenance of neuropathic pain is incompletely understood but may help inform strategies for pain management. Here, we sought to define the nociceptive roles of the individual PGE2 receptors (EP1-4) in the SNI model using EP knockout mice. We found that PGE2 levels at the site of injury were increased and that the expression of the terminal synthase for PGE2, cytosolic PGE synthase was up-regulated in resident positive macrophages located within the damaged nerve. Only genetic deletion of the EP3 receptor affected nociceptive behavior and reduced the development of late-stage mechanical allodynia as well as recruitment of immune cells to the injured nerve. Importantly, EP3 activation induced the release of CC-chemokine ligand 2 (CCL2), and antagonists against the CCL2 receptor reduced mechanical allodynia in WT but not in EP3 knockout mice. We conclude that selective inhibition of EP3 might present a potential approach for reducing chronic neuropathic pain.


Subject(s)
Chemokine CCL2/toxicity , Hyperalgesia/prevention & control , Neuralgia/prevention & control , Receptors, Prostaglandin E, EP3 Subtype/physiology , Sciatic Nerve/physiopathology , Animals , Cells, Cultured , Hyperalgesia/etiology , Hyperalgesia/metabolism , Hyperalgesia/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuralgia/etiology , Neuralgia/metabolism , Neuralgia/pathology , Pain Measurement , Pyrrolidines/pharmacology , Receptors, CCR2/antagonists & inhibitors , Receptors, CCR2/metabolism , Sciatic Nerve/injuries
2.
J Biol Chem ; 292(15): 6123-6134, 2017 04 14.
Article in English | MEDLINE | ID: mdl-28242764

ABSTRACT

Sensitization of the heat-activated ion channel transient receptor potential vanilloid 1 (TRPV1) through lipids is a fundamental mechanism during inflammation-induced peripheral sensitization. Leukotriene B4 is a proinflammatory lipid mediator whose role in peripheral nociceptive sensitization is not well understood to date. Two major G-protein-coupled receptors for leukotriene B4 have been identified: the high-affinity receptor BLT1 and the low-affinity receptor BLT2. Transcriptional screening for the expression G-protein-coupled receptors in murine dorsal root ganglia showed that both receptors were among the highest expressed in dorsal root ganglia. Calcium imaging revealed a sensitization of TRPV1-mediated calcium increases in a relative narrow concentration range for leukotriene B4 (100-200 nm). Selective antagonists and neurons from knock-out mice demonstrated a BLT1-dependent sensitization of TRPV1-mediated calcium increases. Accordingly, leukotriene B4-induced thermal hyperalgesia was mediated through BLT1 and TRPV1 as shown using the respective knock-out mice. Importantly, higher leukotriene B4 concentrations (>0.5 µm) and BLT2 agonists abolished sensitization of the TRPV1-mediated calcium increases. Also, BLT2 activation inhibited protein kinase C- and protein kinase A-mediated sensitization processes through the phosphatase calcineurin. Consequently, a selective BLT2-receptor agonist increased thermal and mechanical withdrawal thresholds during zymosan-induced inflammation. In accordance with these data, immunohistochemical analysis showed that both leukotriene B4 receptors were expressed in peripheral sensory neurons. Thus, the data show that the two leukotriene B4 receptors have opposing roles in the sensitization of peripheral sensory neurons forming a self-restricting system.


Subject(s)
Calcium Signaling/physiology , Ganglia, Spinal/metabolism , Leukotriene B4/metabolism , Receptors, Leukotriene B4/metabolism , Sensory Receptor Cells/metabolism , Animals , Calcineurin/genetics , Calcineurin/metabolism , Calcium Signaling/drug effects , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Hyperalgesia/chemically induced , Hyperalgesia/genetics , Hyperalgesia/metabolism , Leukotriene B4/pharmacology , Mice , Mice, Knockout , Protein Kinase C/genetics , Protein Kinase C/metabolism , Receptors, Leukotriene B4/genetics , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
3.
Pain ; 155(3): 545-555, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24333781

ABSTRACT

Prostacyclin is an important mediator of peripheral pain sensation. Here, we investigated its potential participation in mediating neuropathic pain and found that prostacyclin receptor (IP) knockout mice exhibited markedly decreased pain behavior. Application of an IP antagonist to the injury site or selective IP deficiency in myeloid cells mimicked the antinociceptive effect observed in IP knockout mice. At the site of nerve injury, IP was expressed in interleukin (IL) 1ß-containing resident macrophages, which were less common in IP knockout mice. Local administration of the IP agonist cicaprost inhibited macrophage migration in vitro and promoted accumulation of IP- and IL1ß-expressing cells as well as an increase of IL1ß concentrations at the application site in vivo. Fittingly, the IL1-receptor antagonist anakinra (IL-1ra) decreased neuropathic pain behavior in wild-type mice but not in IP knockout mice. Finally, continuous, but not single administration, of the cyclooxygenase inhibitor meloxicam early after nerve injury decreased pain behavior and the number of resident macrophages. Thus, early synthesis of prostacyclin at the site of injury causes accumulation of IL1ß-expressing macrophages as a key step in neuropathic pain after traumatic injury.


Subject(s)
Epoprostenol/physiology , Gene Expression Regulation , Interleukin-1beta/biosynthesis , Macrophages/metabolism , Neuralgia/metabolism , Animals , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuralgia/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...