Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 74(2): 393-408.e20, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30956043

ABSTRACT

Multiple layers of regulation modulate the activity and localization of protein kinases. However, many details of kinase regulation remain incompletely understood. Here, we apply saturation mutagenesis and a chemical genetic method for allosterically modulating kinase global conformation to Src kinase, providing insight into known regulatory mechanisms and revealing a previously undiscovered interaction between Src's SH4 and catalytic domains. Abrogation of this interaction increased phosphotransferase activity, promoted membrane association, and provoked phosphotransferase-independent alterations in cell morphology. Thus, Src's SH4 domain serves as an intramolecular regulator coupling catalytic activity, global conformation, and localization, as well as mediating a phosphotransferase-independent function. Sequence conservation suggests that the SH4 domain regulatory interaction exists in other Src-family kinases. Our combined approach's ability to reveal a regulatory mechanism in one of the best-studied kinases suggests that it could be applied broadly to provide insight into kinase structure, regulation, and function.


Subject(s)
Catalytic Domain/genetics , Mutagenesis/genetics , Protein Conformation , src-Family Kinases/chemistry , Allosteric Regulation/genetics , Cell Membrane/chemistry , Cell Membrane/enzymology , HEK293 Cells , Humans , Phosphorylation , src-Family Kinases/genetics
2.
Nat Methods ; 14(9): 891-896, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28737741

ABSTRACT

We developed a chemically inducible Cas9 (ciCas9) and a droplet digital PCR assay for double-strand breaks (DSB-ddPCR) to investigate the kinetics of Cas9-mediated generation and repair of DSBs in cells. ciCas9 is a rapidly activated, single-component Cas9 variant engineered by replacing the protein's REC2 domain with the BCL-xL protein and fusing an interacting BH3 peptide to the C terminus. ciCas9 can be tunably activated by a compound that disrupts the BCL-xL-BH3 interaction within minutes. DSB-ddPCR demonstrates time-resolved, highly quantitative, and targeted measurement of DSBs. Combining these tools facilitated an unprecedented exploration of the kinetics of Cas9-mediated DNA cleavage and repair. We find that sgRNAs targeting different sites generally induce cleavage within minutes and repair within 1 or 2 h. However, we observe distinct kinetic profiles, even for proximal sites, and this suggests that target sequence and chromatin state modulate cleavage and repair kinetics.


Subject(s)
Caspase 9/genetics , DNA Breaks, Double-Stranded , DNA Probes/genetics , Gene Editing/methods , Molecular Probe Techniques , Polymerase Chain Reaction/methods , Kinetics
3.
Nat Chem Biol ; 13(1): 119-126, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27870838

ABSTRACT

Synthetic protein switches controlled with user-defined inputs are powerful tools for studying and controlling dynamic cellular processes. To date, these approaches have relied primarily on intermolecular regulation. Here we report a computationally guided framework for engineering intramolecular regulation of protein function. We utilize this framework to develop chemically inducible activator of RAS (CIAR), a single-component RAS rheostat that directly activates endogenous RAS in response to a small molecule. Using CIAR, we show that direct RAS activation elicits markedly different RAS-ERK signaling dynamics from growth factor stimulation, and that these dynamics differ among cell types. We also found that the clinically approved RAF inhibitor vemurafenib potently primes cells to respond to direct wild-type RAS activation. These results demonstrate the utility of CIAR for quantitatively interrogating RAS signaling. Finally, we demonstrate the general utility of our approach in design of intramolecularly regulated protein tools by applying it to the Rho family of guanine nucleotide exchange factors.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System , Protein Engineering , ras Proteins/chemistry , ras Proteins/metabolism , Cell Line , Humans , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...