Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36182082

ABSTRACT

Nano-sized drug delivery systems have been the subject of intense research in recent years because polymeric materials allow the absorption and release of active substances in a controlled manner. Despite the benefits, the safety of nanoparticulate systems is an aspect to be understood, particularly in vivo systems. Caenorhabditis elegans is a very useful alternative model for nanotoxicology and has been recently applied in this field. The aim of this study was to evaluate toxicological endpoints in C. elegans exposed to nanocapsules (NC) prepared with different coatings: polysorbate 80 (NCP80); polyethylene glycol (NCPEG), Eudragit® RS 100 (NCEUD) and chitosan (NCCS). Nanocapsules were prepared by nanoprecipitation method and showed acceptable physico-chemical characterization. Polyethylene glycol nanocapsules and chitosan nanocapsules increased worms lethality in a dose-dependent manner in acute exposure; polysorbate 80 nanocapsules, polyethylene glycol nanocpsules and chitonan nanocapsules also increased lethality following chronic exposure. Chitosan nanocapsules were the most toxic in all exposures, demonstrating toxicity even at low concentrations. Reproduction and body length were not affected by any of the nanocapsules exposures. The expression of superoxide dismutase showed that polysorbate 80 nanocapsules at the highest concentration slightly increased SOD-3::GFP expression. On the other hand, chitosan nanocapsules exposure blunted SOD-3 expression. This work demonstrates the toxicological differences between nanocapsule produced with different coatings and indicates higher safety for the use of eugragit nanocapsule in new formulations for future drug delivery and targeting systems.


Subject(s)
Chitosan , Nanocapsules , Animals , Nanocapsules/toxicity , Nanocapsules/chemistry , Caenorhabditis elegans , Chitosan/toxicity , Polysorbates/toxicity , Polymers/chemistry , Superoxide Dismutase
SELECTION OF CITATIONS
SEARCH DETAIL