Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 128(6): 066602, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35213189

ABSTRACT

We show that bicircular light (BCL) is a versatile way to control magnetic symmetries and topology in materials. The electric field of BCL, which is a superposition of two circularly polarized light waves with frequencies that are integer multiples of each other, traces out a rose pattern in the polarization plane that can be chosen to break selective symmetries, including spatial inversion. Using a realistic low-energy model, we theoretically demonstrate that the three-dimensional Dirac semimetal Cd_{3}As_{2} is a promising platform for BCL Floquet engineering. Without strain, BCL irradiation induces a transition to a noncentrosymmetric magnetic Weyl semimetal phase with tunable energy separation between the Weyl nodes. In the presence of strain, we predict the emergence of a magnetic topological crystalline insulator with exotic unpinned surface Dirac states that are protected by a combination of twofold rotation and time reversal (2^{'}) and can be controlled by light.

2.
Nat Commun ; 12(1): 7169, 2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34887396

ABSTRACT

Electrons navigate more easily in a background of ordered magnetic moments than around randomly oriented ones. This fundamental quantum mechanical principle is due to their Bloch wave nature and also underlies ballistic electronic motion in a perfect crystal. As a result, a paramagnetic metal that develops ferromagnetic order often experiences a sharp drop in the resistivity. Despite the universality of this phenomenon, a direct observation of the impact of ferromagnetic order on the electronic quasiparticles in a magnetic metal is still lacking. Here we demonstrate that quasiparticles experience a significant enhancement of their lifetime in the ferromagnetic state of the low-density magnetic semimetal EuCd2As2, but this occurs only in selected bands and specific energy ranges. This is a direct consequence of the magnetically induced band splitting and the multi-orbital nature of the material. Our detailed study allows to disentangle different electronic scattering mechanisms due to non-magnetic disorder and magnon exchange. Such high momentum and energy dependence quasiparticle lifetime enhancement can lead to spin selective transport and potential spintronic applications.

3.
Nat Commun ; 12(1): 1855, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33767195

ABSTRACT

Time reversal symmetric (TRS) invariant topological insulators (TIs) fullfil a paradigmatic role in the field of topological materials, standing at the origin of its development. Apart from TRS protected strong TIs, it was realized early on that more confounding weak topological insulators (WTI) exist. WTIs depend on translational symmetry and exhibit topological surface states only in certain directions making it significantly more difficult to match the experimental success of strong TIs. We here report on the discovery of a WTI state in RhBi2 that belongs to the optimal space group P[Formula: see text], which is the only space group where symmetry indicated eigenvalues enumerate all possible invariants due to absence of additional constraining crystalline symmetries. Our ARPES, DFT calculations, and effective model reveal topological surface states with saddle points that are located in the vicinity of a Dirac point resulting in a van Hove singularity (VHS) along the (100) direction close to the Fermi energy (EF). Due to the combination of exotic features, this material offers great potential as a material platform for novel quantum effects.

4.
Phys Rev Lett ; 121(12): 127002, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30296139

ABSTRACT

Although discovered many decades ago, superconductivity in doped SrTiO_{3} remains a topic of intense research. Recent experiments revealed that, upon increasing the carrier concentration, multiple bands cross the Fermi level, signaling the onset of Lifshitz transitions. Interestingly, T_{c} was observed to be suppressed across the Lifshitz transition of oxygen-deficient SrTiO_{3}; a similar behavior was also observed in gated LaAlO_{3}/SrTiO_{3} interfaces. Such a behavior is difficult to explain in the clean theory of two-band superconductivity, as the additional electronic states provided by the second band should enhance T_{c}. Here, we show that this unexpected behavior can be explained by the strong pair-breaking effect promoted by disorder, which takes place if the interband pairing interaction is subleading and repulsive. A consequence of this scenario is that, upon moving away from the Lifshitz transition, the two-band superconducting state changes from opposite-sign gaps to same-sign gaps.

SELECTION OF CITATIONS
SEARCH DETAIL
...