Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Small ; 20(16): e2308677, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38009515

ABSTRACT

Fuel cells offer great promise for portable electricity generation, but their use is currently limited by their low durability, excessive operating temperatures, and expensive precious metal electrodes. It is therefore essential to develop fuel cell systems that can perform effectively using more robust electrolyte materials, at reasonable temperatures, with lower-cost electrodes. Recently, proton exchange membrane fuel cells have attracted attention due to their generally favorable chemical stability and quick start-up times. However, in most membrane materials, water is required for proton conduction, severely limiting operational temperatures. Here, for the first time it is demonstrated that when acidified, PAF-1 can conduct protons at high temperatures, via a unique framework diffusion mechanism. It shows that this acidified PAF-1 material can be pressed into pellets with high proton conduction properties even at high temperatures and pellet thickness, highlighting the processibility, and ease of use of this material. Furthermore, a fuel cell is shown with high power density output is possible using a non-precious metal copper electrode. Acid-doped PAF-1 therefore represents a significant step forward in the potential for a broad-purpose fuel cell due to it being cheap, robust, efficient, and easily processible.

2.
ChemSusChem ; 16(10): e202300019, 2023 May 19.
Article in English | MEDLINE | ID: mdl-36772914

ABSTRACT

Incorporating photo-switches into skeletal structures of microporous materials or as guest molecules yield photo-responsive materials for low-energy CO2 capture but at the expense of lower CO2 uptake. Here, we overcome this limitation by exploiting trans-cis photoisomerization of azobenzene loaded into the micropores of hypercross-linked polymers (HCPs) derived from waste polystyrene. Azobenzene in HCP pores reduced CO2 uptake by 19 %, reaching 37.7 cm3 g-1 , but this loss in CO2 uptake was not only recovered by trans-cis photoisomerization of azobenzene, but also increased by 22 %, reaching 56.9 cm3 g-1 , when compared to as-prepared HCPs. Computational simulations show that this increase in CO2 uptake is due to photo-controlled increments in 10-20 Šmicropore volume, i. e., adsorption sites and a photo-reversible positive dipole moment. Irradiating these HCPs with visual-range light reverted CO2 uptake to 33 cm3 g-1 . This shows that it is feasible to recycle waste polystyrene into advanced materials for low-energy carbon capture.

3.
Phys Chem Chem Phys ; 24(34): 20025-20029, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35975691

ABSTRACT

Here we show an 'artificial synthesis' method for covalent triazine framework (CTF) materials, enabling localised structural features to be incorporated that result directly from the acid-catalysed synthetic protocol that would otherwise not be captured. This advancement will enable prediction and design of new CTF materials with targeted properties.


Subject(s)
Triazines , Catalysis , Triazines/chemistry
4.
Phys Chem Chem Phys ; 22(38): 21642-21645, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32968748

ABSTRACT

Conjugated microporous polymers (CMPs) synthesised in different solvents give different surface areas dependent on the solvent choice. No one solvent results in a high surface area across a range of different CMP materials. Here, we present an investigation into how the porosity of CMPs is affected by solvent polarity. It is seen that the trends differ depending on the respective monomer dipole moments and whether hydrogen bonding groups are present in the monomers and are able to interact with the respective solvent via hydrogen bonding. It is believed that this methodology could be used to influence future materials design of both structure and synthesis strategy.

5.
Angew Chem Int Ed Engl ; 59(2): 769-774, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31793140

ABSTRACT

Solid-state Li-ion batteries (SSLIBs) have recently attracted substantial attention from scientists for the advantages of better safety performance. However, there are still several key challenges in SSLIBs that need to be addressed, such as low energy density, poor thermal stability or cycle stability, and large interface resistance. This contribution introduces a novel SSLIB with a porous aromatic framework (PAF-1) accommodating LiPF6 that was used as the solid-state electrolyte (SSE) replacing the liquid electrolyte and diaphragm of traditional Li-ion batteries. The charge, discharge capacity, rate performance and cycle stability of the SSLIB were remarkably enhanced.

6.
Angew Chem Int Ed Engl ; 57(37): 11952-11956, 2018 Sep 10.
Article in English | MEDLINE | ID: mdl-29904996

ABSTRACT

We report the first organically synthesized sp-sp3 hybridized porous carbon, OSPC-1. This new carbon shows electron conductivity, high porosity, the highest uptake of lithium ions of any carbon material to-date, and the ability to inhibit dangerous lithium dendrite formation. The new carbon exhibits exceptional potential as anode material for lithium-ion batteries (LIBs) with high capacity, excellent rate capability, long cycle life, and potential for improved safety performance.

7.
Nat Chem ; 9(10): 977-982, 2017 10.
Article in English | MEDLINE | ID: mdl-28937678

ABSTRACT

Crystalline frameworks composed of hexacoordinate silicon species have thus far only been observed in a few high pressure silicate phases. By implementing reversible Si-O chemistry for the crystallization of covalent organic frameworks, we demonstrate the simple one-pot synthesis of silicate organic frameworks based on octahedral dianionic SiO6 building units. Clear evidence of the hexacoordinate environment around the silicon atoms is given by 29Si nuclear magnetic resonance analysis. Characterization by high-resolution powder X-ray diffraction, density functional theory calculation and analysis of the pair-distribution function showed that those anionic frameworks-M2[Si(C16H10O4)1.5], where M = Li, Na, K and C16H10O4 is 9,10-dimethylanthracene-2,3,6,7-tetraolate-crystallize as two-dimensional hexagonal layers stabilized in a fully eclipsed stacking arrangement with pronounced disorder in the stacking direction. Permanent microporosity with high surface area (up to 1,276 m2 g-1) was evidenced by gas-sorption measurements. The negatively charged backbone balanced with extra-framework cations and the permanent microporosity are characteristics that are shared with zeolites.

8.
Phys Chem Chem Phys ; 18(25): 16840-7, 2016 Jun 22.
Article in English | MEDLINE | ID: mdl-27281022

ABSTRACT

Understanding the formation mechanism of ultra porous framework materials may lead to insights into strategies for the design and synthesis of novel ultra porous materials or for the increased surface area of known materials. Several potential formation mechanisms have been proposed based on experimental evidence. Here, we assess, via simulation of the network generation process, these mechanisms and have identified key processes by which network interpenetration is minimised and hence surface area is maximised.

9.
Phys Chem Chem Phys ; 17(2): 817-23, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25415759

ABSTRACT

Varying degrees of order have been found experimentally for a series of covalent triazine-based frameworks (CTFs) when synthesised under different reaction conditions. Here, we use molecular modelling to discuss the potential origins of this structural order by analysis of the node and strut building blocks. We use a combination of small model structures based on DFT optimised monomer units and more extended simulations using automated structure growth and molecular dynamics to discuss the influence of the strut structure on the local crystallinity of these materials.

10.
J Am Chem Soc ; 135(47): 17818-30, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24156758

ABSTRACT

Some organic cage molecules have structures with protected, internal pore volume that cannot be in-filled, irrespective of the solid-state packing mode: that is, they are intrinsically porous. Amorphous packings can give higher pore volumes than crystalline packings for these materials, but the precise nature of this additional porosity is hard to understand for disordered solids that cannot be characterized by X-ray diffraction. We describe here a computational methodology for generating structural models of amorphous porous organic cages that are consistent with experimental data. Molecular dynamics simulations rationalize the observed gas selectivity in these amorphous solids and lead to insights regarding self-diffusivities, gas diffusion trajectories, and gas hopping mechanisms. These methods might be suitable for the de novo design of new amorphous porous solids for specific applications, where "rigid host" approximations are not applicable.

11.
Angew Chem Int Ed Engl ; 51(51): 12727-31, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23143745
13.
Nature ; 474(7351): 367-71, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21677756

ABSTRACT

Nanoporous molecular frameworks are important in applications such as separation, storage and catalysis. Empirical rules exist for their assembly but it is still challenging to place and segregate functionality in three-dimensional porous solids in a predictable way. Indeed, recent studies of mixed crystalline frameworks suggest a preference for the statistical distribution of functionalities throughout the pores rather than, for example, the functional group localization found in the reactive sites of enzymes. This is a potential limitation for 'one-pot' chemical syntheses of porous frameworks from simple starting materials. An alternative strategy is to prepare porous solids from synthetically preorganized molecular pores. In principle, functional organic pore modules could be covalently prefabricated and then assembled to produce materials with specific properties. However, this vision of mix-and-match assembly is far from being realized, not least because of the challenge in reliably predicting three-dimensional structures for molecular crystals, which lack the strong directional bonding found in networks. Here we show that highly porous crystalline solids can be produced by mixing different organic cage modules that self-assemble by means of chiral recognition. The structures of the resulting materials can be predicted computationally, allowing in silico materials design strategies. The constituent pore modules are synthesized in high yields on gram scales in a one-step reaction. Assembly of the porous co-crystals is as simple as combining the modules in solution and removing the solvent. In some cases, the chiral recognition between modules can be exploited to produce porous organic nanoparticles. We show that the method is valid for four different cage modules and can in principle be generalized in a computationally predictable manner based on a lock-and-key assembly between modules.

14.
Chem Commun (Camb) ; 47(31): 8919-21, 2011 Aug 21.
Article in English | MEDLINE | ID: mdl-21666905

ABSTRACT

A [2+3] organic cage compound based on the condensation reaction of 1,3,5-tri(4-formylphenyl)benzene with 1,5-pentanediamine was synthesized. The resulting porous molecular crystal demonstrates selective adsorption of hydrogen and carbon dioxide over nitrogen. As for porous polymer membranes, a trade-off between sorption capacity and selectivity is observed for materials in this class.

15.
Nat Commun ; 2: 207, 2011 Feb 22.
Article in English | MEDLINE | ID: mdl-21343925

ABSTRACT

The main strategy for constructing porous solids from discrete organic molecules is crystal engineering, which involves forming regular crystalline arrays. Here, we present a chemical approach for desymmetrizing organic cages by dynamic covalent scrambling reactions. This leads to molecules with a distribution of shapes which cannot pack effectively and, hence, do not crystallize, creating porosity in the amorphous solid. The porous properties can be fine tuned by varying the ratio of reagents in the scrambling reaction, and this allows the preparation of materials with high gas selectivities. The molecular engineering of porous amorphous solids complements crystal engineering strategies and may have advantages in some applications, for example, in the compatibilization of functionalities that do not readily cocrystallize.


Subject(s)
Macromolecular Substances/chemical synthesis , Models, Molecular , Organic Chemicals/chemistry , Imines/chemistry , Macromolecular Substances/chemistry , Molecular Structure , Porosity , X-Ray Diffraction
17.
Nat Chem ; 2(11): 915-20, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20966946

ABSTRACT

Most synthetic materials that show molecular-scale porosity consist of one-, two- or three-dimensional networks. Porous metal-organic frameworks in particular have attracted a lot of recent attention. By contrast, discrete molecules tend to pack efficiently in the solid state, leaving as little empty space as possible, which leads to non-porous materials. This Perspective discusses recent developments with discrete organic molecules that are porous in the solid state. Such molecules, which may be either crystalline or amorphous, can be categorized as either intrinsically porous (containing permanent covalent cavities) or extrinsically porous (inefficiently packed). We focus on the possible advantages of organic molecules over inorganic or hybrid systems in terms of molecular solubility, choice of components and functionalities, and structural mobility and responsiveness in non-covalent extended solids. We also highlight the potential for 'undiscovered' porous systems among the large number of cage-like organic molecules that are already known.


Subject(s)
Organic Chemicals/chemistry , Crystallization , Models, Molecular , Molecular Structure , Solubility
18.
Nat Chem ; 2(9): 750-5, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20729895

ABSTRACT

Interlocked molecules comprise two or more separate components that are joined by 'mechanical' rather than covalent bonds. In other words, these molecular assemblies cannot be dissociated without the cleavage of one or more chemical bonds. Although recent progress has enabled the preparation of such topologies through coordination or templating interactions, three-dimensional interlocked covalent architectures remain difficult to prepare. Here, we present a template-free one-pot synthesis of triply interlocked organic cages. These 20-component dimers consist of two tetrahedral monomeric cages each built from four nodes and six linkers. The monomers exhibit axial chirality, which is recognized by their partner cage during the template-free interlocking assembly process. The dimeric cages also include two well-defined cavities per assembly, which for one of the systems studied led to the formation of a supramolecular host-guest chain. These interlocked organic molecules may prove useful as part of a toolkit for the modular construction of complex porous solids and other supramolecular assemblies.


Subject(s)
Aldehydes/chemistry , Benzene Derivatives/chemistry , Ethylenediamines/chemistry , Macromolecular Substances/chemical synthesis , Crystallography, X-Ray , Macromolecular Substances/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Infrared
19.
Angew Chem Int Ed Engl ; 49(9): 1533-5, 2010 Feb 22.
Article in English | MEDLINE | ID: mdl-20127925
20.
Nat Mater ; 8(12): 973-8, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19855385

ABSTRACT

Porous materials are important in a wide range of applications including molecular separations and catalysis. We demonstrate that covalently bonded organic cages can assemble into crystalline microporous materials. The porosity is prefabricated and intrinsic to the molecular cage structure, as opposed to being formed by non-covalent self-assembly of non-porous sub-units. The three-dimensional connectivity between the cage windows is controlled by varying the chemical functionality such that either non-porous or permanently porous assemblies can be produced. Surface areas and gas uptakes for the latter exceed comparable molecular solids. One of the cages can be converted by recrystallization to produce either porous or non-porous polymorphs with apparent Brunauer-Emmett-Teller surface areas of 550 and 23 m2 g(-1), respectively. These results suggest design principles for responsive porous organic solids and for the modular construction of extended materials from prefabricated molecular pores.

SELECTION OF CITATIONS
SEARCH DETAIL
...