Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cannabis Cannabinoid Res ; 8(S1): S25-S41, 2023 09.
Article in English | MEDLINE | ID: mdl-37721989

ABSTRACT

Introduction: Despite growing consumer interest and market availability, the safety of minor cannabinoids, generally present in low concentrations in Cannabis sativa L., is not well understood. Materials and Methods: Cannabichromene (CBC; 3.2, 10, 17, 22, 32, or 100 mg/kg-bw/day), cannabinol (CBN; 1, 3.2, 10, 17, 32, or 100 mg/kg-bw/day), delta-8-tetrahydrocannabinol (D8-THC; 0.32, 1, 3.2, or 10 mg/kg-bw/day), tetrahydrocannabivarin (THCV; 3.2, 10, 17, 22, 32, or 100 mg/kg-bw/day), and vehicle (medium-chain triglyceride oil) preparations were administered via oral gavage once daily for 14 days to Sprague Dawley rats. Changes in behavior, body weight, food consumption, clinical pathology, organ weights, body temperature, and thermal pain sensitivity (tail flick assay) were assessed. Select organ tissues were collected at terminal necropsy and fixed for histopathological examination. Results: No treatment-related deaths were observed throughout the study, and cannabinoids were generally well tolerated. While some significant trends in body weight differences from controls (increases and decreases) were observed, these occurred independently of food consumption. Overall, differences in serum chemistry and hematology parameters between cannabinoid groups and their respective control groups were considered to occur due to biological variation among rats. No treatment-related gross abnormalities were observed in examined organs. Significant changes in absolute and relative organ weights occurred primarily in males and were generally of negligible magnitude. There were no biologically significant histopathological observations. While pain tolerance was significantly improved in animals treated with D8-THC (3.2 and 10 mg/kg-bw/day, day 14), results across minor cannabinoids were inconsistent and warrant further study. Conclusion: Minor cannabinoids were well tolerated across 14 days of daily oral administration at the doses assessed. Modest, dose-dependent trends in relative organ weights and serum chemistry parameters warrant exploration at higher oral doses. These data will assist in dose selection for future studies investigating the long-term safety and effects of CBC, CBN, D8-THC, and THCV.


Subject(s)
Cannabinol , Pain Threshold , Male , Rats , Animals , Pain Measurement , Rats, Sprague-Dawley , Administration, Oral , Body Weight
2.
Regul Toxicol Pharmacol ; 142: 105425, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37271419

ABSTRACT

Consumer use of cannabidiol (CBD) for personal wellness purposes has garnered much public interest. However, safety-related data on CBD in the public domain are limited, including a lack of quality studies evaluating its genotoxic potential. The quality of available studies is limited due to the test material used (e.g., low CBD purity) and/or study design, leading some global regulatory agencies to highlight genotoxicity as an important data gap for CBD. To address this gap, the genotoxic potential of a pure CBD isolate was investigated in a battery of three genotoxicity assays conducted according to OECD testing guidelines. In an in vitro microbial reverse mutation assay, CBD up to 5000 µg/plate was negative in Salmonella typhimurium strains TA98, TA100, TA1535, and TA1537, and Escherichia coli strain WP2 uvrA, with and without metabolic activation. Testing in an in vitro micronucleus assay was negative in human TK6 cells up to 10-11 µg/mL, with and without metabolic activation. Finally, an in vivo micronucleus assay conducted in male and female rats was negative for genotoxicity up to 1000 mg/kg-bw/d. Bioanalysis of CBD and its primary metabolite, 7-carboxy CBD, confirmed a dose-related increase in plasma exposure. Together, these assays indicate that CBD is unlikely to pose a genotoxic hazard.


Subject(s)
Cannabidiol , Rats , Male , Humans , Female , Animals , Mutagenicity Tests , Cannabidiol/toxicity , Micronucleus Tests , Salmonella typhimurium/genetics , DNA Damage , Escherichia coli/genetics
3.
Food Chem Toxicol ; 176: 113786, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37105390

ABSTRACT

An important data gap in determining a safe level of cannabidiol (CBD) intake for consumer use is determination of CBD's potential to cause reproductive or developmental toxicity. We conducted an OECD Test Guideline 421 GLP-compliant study in rats, with extended postnatal dosing and hormone analysis, where hemp-derived CBD isolate (0, 30, 100, or 300 mg/kg-bw/d) was administered orally. Treatment-related mortality, moribundity, and decreased body weight and food consumption were observed in high-dose F0 adult animals, consistent with severe maternal toxicity. No effects were observed on testosterone concentrations, F0 reproductive performance, or reproductive organs. Hepatocellular hypertrophy in the 100- and 300 mg/kg-bw/day groups correlated with hypertrophy/hyperplasia in the thyroid gland and changes in mean thyroid hormone concentrations in F0 animals. Mean gestation length was unaffected; however, total litter loss for two females and dystocia for two additional females in the high-dose group occurred. Other developmental effects were limited to lower mean pup weights in the 300 mg/kg-bw/d group compared to those of concurrent controls. The following NOAELs were identified for CBD isolate based on this study: 100 mg/kg-bw/d for F0 systemic toxicity and female reproductive toxicity, 300 mg/kg-bw/d for F0 male reproductive toxicity, and 100 mg/kg-bw/d for F1 neonatal and F1 generation toxicity.


Subject(s)
Cannabidiol , Pregnancy , Rats , Female , Male , Animals , Cannabidiol/toxicity , Reproduction , Testosterone , Thyroid Gland , No-Observed-Adverse-Effect Level , Body Weight
4.
Food Chem Toxicol ; 176: 113778, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37105391

ABSTRACT

Use of cannabidiol (CBD) in humans has increased considerably in recent years. While currently available studies suggest that CBD is relatively safe for human consumption, data from publicly available studies on CBD conducted according to modern testing guidelines are lacking. In the current study, the potential for toxicity following repeated oral exposure to hemp-derived CBD isolate was evaluated in male and female Sprague Dawley rats. No adverse treatment-related effects were observed following administration of CBD via oral gavage for 14 and 90 days at concentrations up to 150 and 140 mg/kg-bw/d, respectively. Microscopic liver and adrenal gland changes observed in the 90-day study were determined to be resolved after a 28-day recovery period. CBD was well tolerated at these dose levels, and the results of this study are comparable to findings reported in unpublished studies conducted with other CBD isolates. The current studies were conducted as part of a broader research program to examine the safety of CBD.


Subject(s)
Cannabidiol , Cannabis , Rats , Animals , Male , Humans , Female , Cannabidiol/toxicity , Rats, Sprague-Dawley , Cannabis/toxicity , Administration, Oral
5.
J Psychopharmacol ; 34(12): 1393-1407, 2020 12.
Article in English | MEDLINE | ID: mdl-32842837

ABSTRACT

BACKGROUND: Regulator of G protein Signaling (RGS) proteins inhibit G protein-coupled receptor (GPCR) signaling, including the signals that arise from neurotransmitter release. We have shown that RGS12 loss diminishes locomotor responses of C57BL/6J mice to dopamine transporter (DAT)-targeting psychostimulants. This diminution resulted from a brain region-specific upregulation of DAT expression and function in RGS12-null mice. This effect on DAT prompted us to investigate whether the serotonin transporter (SERT) exhibits similar alterations upon RGS12 loss in C57BL/6J mice. AIMS: Does RGS12 loss affect (a) hyperlocomotion to the preferentially SERT-targeting psychostimulant 3,4-methylenedioxymethamphetamine (MDMA), (b) SERT expression and function in relevant brain regions, and/or (c) serotonergically modulated behaviors? METHODS: Open-field and spontaneous home-cage locomotor activities were quantified. 5-HT, 5-HIAA, and SERT levels in brain-region homogenates, as well as SERT expression and function in brain-region tissue preparations, were measured using appropriate biochemical assays. Serotonergically modulated behaviors were assessed using forced swim and tail suspension paradigms, elevated plus and elevated zero maze tests, and social interaction assays. RESULTS: RGS12-null mice displayed no hyperlocomotion to 10 mg/kg MDMA. There were brain region-specific alterations in SERT expression and function associated with RGS12 loss. Drug-naïve RGS12-null mice displayed increases in both anxiety-like and anti-depressive-like behaviors. CONCLUSION: RGS12 is a critical modulator of serotonergic neurotransmission and serotonergically modulated behavior in mice; lack of hyperlocomotion to low dose MDMA in RGS12-null mice is related to an alteration of steady-state SERT expression and 5-HT uptake.


Subject(s)
Behavior, Animal/physiology , Locomotion/physiology , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , RGS Proteins/physiology , Serotonin Agents/pharmacology , Serotonin Plasma Membrane Transport Proteins/metabolism , Animals , Behavior, Animal/drug effects , Locomotion/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , N-Methyl-3,4-methylenedioxyamphetamine/administration & dosage , RGS Proteins/genetics , Serotonin Agents/administration & dosage , Social Behavior
6.
Drug Alcohol Depend ; 214: 108179, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32688070

ABSTRACT

BACKGROUND: Recent years have seen a rise in the diversity and use of synthetic cannabinoids. The present study evaluated the behavioral effects of the third-generation indazole-3-carboxamide-type synthetic cannabinoid, AB-FUBINACA. METHODS: Adult male and female C57BL/6J mice were treated with AB-FUBINACA (0-3 mg/kg, i.p.) and tested repeatedly in the tetrad battery measuring catalepsy, antinociception, hypothermia, and locomotor activity. Mice treated with AB-FUBINACA (≥2 mg/kg, i.p.) displayed classic cannabinoid effects in the tetrad that were blocked by the CB1 receptor selective antagonist rimonabant. To address tolerance and withdrawal effects, a second group of mice was injected with AB-FUBINACA (3 mg/kg, s.c.) or vehicle consisting of 5% ethanol, 5% Kolliphor EL, and 90 % saline every 12 h and tested daily in modified tetrad over the course of 5 days. On the 6th day, withdrawal was precipitated using rimonabant (3 mg/kg, s.c.), and somatic signs of withdrawal (i.e., head twitches and paw tremors) were quantified. RESULTS: Although mice did not develop tolerance to AB-FUBINACA or cross-tolerance to Δ9-tetrahydrocannabinol (THC; 50 mg/kg, i.p.), somatic precipitated withdrawal signs were observed. Repeated tetrad testing up to 48 h post injection indicated that AB-FUBINACA effects are relatively short-lived, as compared with THC. Brain levels of AB-FUBINACA, as quantified by UHPLC-MS/MS, were undetectable 4 h post injection. CONCLUSIONS: These data indicate that the cannabinoid effects of AB-FUBINACA are relatively short-lived, yet sufficient to induce dependence in mice.


Subject(s)
Indazoles/pharmacology , Animals , Cannabinoids/pharmacology , Dronabinol/pharmacology , Drug Tolerance , Locomotion/drug effects , Male , Mice , Mice, Inbred C57BL , Receptor, Cannabinoid, CB1 , Rimonabant/pharmacology , Substance-Related Disorders , Tandem Mass Spectrometry
7.
J Pharmacol Exp Ther ; 371(2): 487-499, 2019 11.
Article in English | MEDLINE | ID: mdl-31492823

ABSTRACT

Mu opioid receptor (MOR)-targeting analgesics are efficacious pain treatments, but notorious for their abuse potential. In preclinical animal models, coadministration of traditional kappa opioid receptor (KOR)-targeting agonists with MOR-targeting analgesics can decrease reward and potentiate analgesia. However, traditional KOR-targeting agonists are well known for inducing antitherapeutic side effects (psychotomimesis, depression, anxiety, dysphoria). Recent data suggest that some functionally selective, or biased, KOR-targeting agonists might retain the therapeutic effects of KOR activation without inducing undesirable side effects. Nalfurafine, used safely in Japan since 2009 for uremic pruritus, is one such functionally selective KOR-targeting agonist. Here, we quantify the bias of nalfurafine and several other KOR agonists relative to an unbiased reference standard (U50,488) and show that nalfurafine and EOM-salvinorin-B demonstrate marked G protein-signaling bias. While nalfurafine (0.015 mg/kg) and EOM-salvinorin-B (1 mg/kg) produced spinal antinociception equivalent to 5 mg/kg U50,488, only nalfurafine significantly enhanced the supraspinal analgesic effect of 5 mg/kg morphine. In addition, 0.015 mg/kg nalfurafine did not produce significant conditioned place aversion, yet retained the ability to reduce morphine-induced conditioned place preference in C57BL/6J mice. Nalfurafine and EOM-salvinorin-B each produced robust inhibition of both spontaneous and morphine-stimulated locomotor behavior, suggesting a persistence of sedative effects when coadministered with morphine. Taken together, these findings suggest that nalfurafine produces analgesic augmentation, while also reducing opioid-induced reward with less risk of dysphoria. Thus, adjuvant administration of G protein-biased KOR agonists like nalfurafine may be beneficial in enhancing the therapeutic potential of MOR-targeting analgesics, such as morphine.


Subject(s)
Analgesia/methods , Drug Delivery Systems/methods , Morphinans/administration & dosage , Morphine/administration & dosage , Pain Measurement/drug effects , Receptors, Opioid, mu/metabolism , Spiro Compounds/administration & dosage , Animals , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Drug Synergism , Female , Locomotion/drug effects , Locomotion/physiology , Male , Mice , Mice, Inbred C57BL , Pain Measurement/methods , Random Allocation , Receptors, Opioid, kappa/administration & dosage , Receptors, Opioid, mu/agonists
8.
Drug Alcohol Depend ; 191: 14-24, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30071445

ABSTRACT

BACKGROUND: A subset of cannabis users develop some degree of Cannabis Use Disorder (CUD). Although behavioral therapy has some success in treating CUD, many users relapse, often citing altered sleep, mood, and irritability. Preclinical animal tests of cannabinoid withdrawal focus primarily on somatic-related behaviors precipitated by a cannabinoid receptor antagonist. The goal of the present study was to develop novel cannabinoid withdrawal assays that are either antagonist-precipitated or spontaneously induced by abstinence. METHODS: C57BL/6 J mice were repeatedly administered the phytocannabinoid Δ9-tetrahydrocannabinol (THC; 1, 10 or 50 mg/kg, s.c.), the synthetic cannabinoid receptor agonist JWH-018 (1 mg/kg, s.c.), or vehicle (1:1:18 parts ethanol:Kolliphor EL:saline, s.c.) for 6 days. Withdrawal was precipitated with the cannabinoid receptor inverse agonist rimonabant (3 mg/kg, i.p.) or elicited via abstinence (i.e., spontaneous withdrawal), and putative stress-related behavior was scored. Classic somatic signs of cannabinoid withdrawal were also quantified. RESULTS: Precipitated THC withdrawal significantly increased plasma corticosterone. Precipitated withdrawal from either THC or JWH-018 suppressed marble burying, increased struggling in the tail suspension test, and elicited somatic withdrawal behaviors. The monoacylglycerol lipase inhibitor JZL184 attenuated somatic precipitated withdrawal but had no effect on marble burying or struggling. Spontaneous THC or JWH-018 withdrawal-induced paw tremors, head twitches, and struggled in the tail suspension test after 24-48 h abstinence. JZL184 or THC attenuated these spontaneous withdrawal-induced behaviors. CONCLUSION: Outcomes from tail suspension and marble burying tests reveal that THC withdrawal is multifaceted, eliciting and suppressing behaviors in these tests, in addition to inducing well-documented somatic signs of withdrawal.


Subject(s)
Behavior, Animal/drug effects , Cannabinoid Receptor Agonists/adverse effects , Marijuana Abuse/etiology , Substance Withdrawal Syndrome/etiology , Animals , Benzodioxoles/adverse effects , Dronabinol/adverse effects , Indoles/adverse effects , Male , Mice , Mice, Inbred C57BL , Naphthalenes/adverse effects , Piperidines/adverse effects , Pyrazoles/adverse effects , Rimonabant
SELECTION OF CITATIONS
SEARCH DETAIL
...