Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(5): 052501, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37595245

ABSTRACT

We used the ^{138}Ba(d,α) reaction to carry out an in-depth study of states in ^{136}Cs, up to around 2.5 MeV. In this Letter, we place emphasis on hitherto unobserved states below the first 1^{+} level, which are important in the context of solar neutrino and fermionic dark matter (FDM) detection in large-scale xenon-based experiments. We identify for the first time candidate metastable states in ^{136}Cs, which would allow a real-time detection of solar neutrino and FDM events in xenon detectors, with high background suppression. Our results are also compared with shell-model calculations performed with three Hamiltonians that were previously used to evaluate the nuclear matrix element (NME) for ^{136}Xe neutrinoless double beta decay. We find that one of these Hamiltonians, which also systematically underestimates the NME compared with the others, dramatically fails to describe the observed low-energy ^{136}Cs spectrum, while the other two show reasonably good agreement.

2.
Infect Dis Model ; 8(1): 183-191, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36643865

ABSTRACT

Recently some of us used a random-walk Monte Carlo simulation approach to study the spread of COVID-19. The calculations were reasonably successful in describing secondary and tertiary waves of infection, in countries such as the USA, India, South Africa and Serbia. However, they failed to predict the observed third wave for India. In this work we present a more complete set of simulations for India, that take into consideration two aspects that were not incorporated previously. These include the stochastic movement of an erstwhile protected fraction of the population, and the reinfection of some recovered individuals because of their exposure to a new variant of the SARS-CoV-2 virus. The extended simulations now show the third COVID-19 wave for India that was missing in the earlier calculations. They also suggest an additional fourth wave, which was indeed observed during approximately the same time period as the model prediction.

3.
Chaos Solitons Fractals ; 156: 111785, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35035125

ABSTRACT

Phenomenological and deterministic models are often used for the estimation of transmission parameters in an epidemic and for the prediction of its growth trajectory. Such analyses are usually based on single peak outbreak dynamics. In light of the present COVID-19 pandemic, there is a pressing need to better understand observed epidemic growth with multiple peak structures, preferably using first-principles methods. Along the lines of our previous work  [Physica A 574, 126014 (2021)], here we apply 2D random-walk Monte Carlo calculations to better understand COVID-19 spread through contact interactions. Lockdown scenarios and all other control interventions are imposed through mobility restrictions and a regulation of the infection rate within the stochastically interacting population. The susceptible, infected and recovered populations are tracked over time, with daily infection rates obtained without recourse to the solution of differential equations. The simulations were carried out for population densities corresponding to four countries, India, Serbia, South Africa and USA. In all cases our results capture the observed infection growth rates. More importantly, the simulation model is shown to predict secondary and tertiary waves of infections with reasonable accuracy. This predictive nature of multiple wave structures provides a simple and effective tool that may be useful in planning mitigation strategies during the present pandemic.

4.
Epidemics ; 37: 100515, 2021 12.
Article in English | MEDLINE | ID: mdl-34763160

ABSTRACT

BACKGROUND: Recent work showed that the temporal growth of the novel coronavirus disease (COVID-19) follows a sub-exponential power-law scaling whenever effective control interventions are in place. Taking this into consideration, we present a new phenomenological logistic model that is well-suited for such power-law epidemic growth. METHODS: We empirically develop the logistic growth model using simple scaling arguments, known boundary conditions and a comparison with available data from four countries, Belgium, China, Denmark and Germany, where (arguably) effective containment measures were put in place during the first wave of the pandemic. A non-linear least-squares minimization algorithm is used to map the parameter space and make optimal predictions. RESULTS: Unlike other logistic growth models, our presented model is shown to consistently make accurate predictions of peak heights, peak locations and cumulative saturation values for incomplete epidemic growth curves. We further show that the power-law growth model also works reasonably well when containment and lock down strategies are not as stringent as they were during the first wave of infections in 2020. On the basis of this agreement, the model was used to forecast COVID-19 fatalities for the third wave in South Africa, which was in progress during the time of this work. CONCLUSION: We anticipate that our presented model will be useful for a similar forecasting of COVID-19 induced infections/deaths in other regions as well as other cases of infectious disease outbreaks, particularly when power-law scaling is observed.


Subject(s)
COVID-19 , Belgium , Communicable Disease Control , Humans , SARS-CoV-2 , South Africa
5.
Physica A ; 574: 126014, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33875903

ABSTRACT

Recent analysis of early COVID-19 data from China showed that the number of confirmed cases followed a subexponential power-law increase, with a growth exponent of around 2.2 (Maier and Brockmann, 2020). The power-law behavior was attributed to a combination of effective containment and mitigation measures employed as well as behavioral changes by the population. In this work, we report a random walk Monte Carlo simulation study of proximity-based infection spread. Control interventions such as lockdown measures and mobility restrictions are incorporated in the simulations through a single parameter, the size of each step in the random walk process. The step size l is taken to be a multiple of 〈 r 〉 , which is the average separation between individuals. Three temporal growth regimes (quadratic, intermediate power-law and exponential) are shown to emerge naturally from our simulations. For l = 〈 r 〉 , we get intermediate power-law growth exponents that are in general agreement with available data from China. On the other hand, we obtain a quadratic growth for smaller step sizes l ≲ 〈 r 〉 ∕ 2 , while for large l the growth is found to be exponential. We further performed a comparative case study of early fatality data (under varying levels of lockdown conditions) from three other countries, India, Brazil and South Africa. We show that reasonable agreement with these data can be obtained by incorporating small-world-like connections in our simulations.

6.
Phys Rev Lett ; 123(14): 142502, 2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31702191

ABSTRACT

From detailed spectroscopy of ^{110}Cd and ^{112}Cd following the ß^{+}/electron-capture decay of ^{110,112}In and the ß^{-} decay of ^{112}Ag, very weak decay branches from nonyrast states are observed. The transition rates determined from the measured branching ratios and level lifetimes obtained with the Doppler-shift attenuation method following inelastic neutron scattering reveal collective enhancements that are suggestive of a series of rotational bands. In ^{110}Cd, a γ band built on the shape-coexisting intruder configuration is suggested. For ^{112}Cd, the 2^{+} and 3^{+} intruder γ-band members are suggested, the 0_{3}^{+} band is extended to spin 4^{+}, and the 0_{4}^{+} band is identified. The results are interpreted using beyond-mean-field calculations employing the symmetry conserving configuration mixing method with the Gogny D1S energy density functional and with the suggestion that the Cd isotopes exhibit multiple shape coexistence.

7.
Phys Rev Lett ; 109(4): 042301, 2012 Jul 27.
Article in English | MEDLINE | ID: mdl-23006079

ABSTRACT

We report a precise determination of the (19)Ne half-life to be T(1/2)=17.262±0.007 s. This result disagrees with the most recent precision measurements and is important for placing bounds on predicted right-handed interactions that are absent in the current standard model. We are able to identify and disentangle two competing systematic effects that influence the accuracy of such measurements. Our findings prompt a reassessment of results from previous high-precision lifetime measurements that used similar equipment and methods.

8.
Phys Rev Lett ; 107(18): 182301, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-22107626

ABSTRACT

A precision measurement of the γ yields following the ß decay of (32)Cl has determined its isobaric-analogue branch to be (22.47(-0.18)(+0.21))%. Since it is an almost pure-Fermi decay, we can also determine the amount of isospin-symmetry breaking in this superallowed transition. We find a very large value, δ(C) = 5.3(9)%, in agreement with a shell-model calculation. This result sets a benchmark for isospin-symmetry-breaking calculations and lends support for similarly calculated, yet smaller, corrections that are currently applied to 0+ → 0 + transitions for tests of the standard model.


Subject(s)
Chlorine/chemistry , Radioactivity , Isotopes , Models, Chemical , Reproducibility of Results
9.
Phys Rev Lett ; 106(3): 032501, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21405268

ABSTRACT

A high-precision half-life measurement for the superallowed ß+ emitter 26Al(m) was performed at the TRIUMF-ISAC radioactive ion beam facility yielding T 1/2 6346.54 ± 0.46(stat) ± 0.60 (syst) ms, consistent with, but 2.5 times more precise than, the previous world average. The 26Al(m) half-life and ft value, 3037.53(61) s, are now the most precisely determined for any superallowed ß decay. Combined with recent theoretical corrections for isospin-symmetry-breaking and radiative effects, the corrected Ft value for (26)Al(m), 3073.0(12) s, sets a new benchmark for the high-precision superallowed Fermi ß-decay studies used to test the conserved vector current hypothesis and determine the V(ud) element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix.


Subject(s)
Aluminum/chemistry , Beta Particles , Radioisotopes/chemistry , Half-Life
10.
Phys Rev Lett ; 88(12): 122501, 2002 Mar 25.
Article in English | MEDLINE | ID: mdl-11909451

ABSTRACT

We have determined the energy of the J(pi) = 1/2(+), T = 3/2 resonance in 32S(p,p) to be E(p) = 3374.7+/-0.8 keV. This disagrees with the previously accepted value of E(p) = 3370+/-1 keV by Abbondanno et al. [Nuovo Cimento 70A, 391 (1970)] and solves a problem raised by recent observations of unexpected deviations from the isobaric multiplet mass equation. This resonance is also important in calibrating the beta-delayed proton spectra from 33Ar and 32Ar, and our findings may modify previous conclusions.

SELECTION OF CITATIONS
SEARCH DETAIL
...