Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
2.
Nature ; 569(7755): 289-292, 2019 05.
Article in English | MEDLINE | ID: mdl-31019305

ABSTRACT

The human MT1 and MT2 melatonin receptors1,2 are G-protein-coupled receptors (GPCRs) that help to regulate circadian rhythm and sleep patterns3. Drug development efforts have targeted both receptors for the treatment of insomnia, circadian rhythm and mood disorders, and cancer3, and MT2 has also been implicated in type 2 diabetes4,5. Here we report X-ray free electron laser (XFEL) structures of the human MT2 receptor in complex with the agonists 2-phenylmelatonin (2-PMT) and ramelteon6 at resolutions of 2.8 Å and 3.3 Å, respectively, along with two structures of function-related mutants: H2085.46A (superscripts represent the Ballesteros-Weinstein residue numbering nomenclature7) and N862.50D, obtained in complex with 2-PMT. Comparison of the structures of MT2 with a published structure8 of MT1 reveals that, despite conservation of the orthosteric ligand-binding site residues, there are notable conformational variations as well as differences in [3H]melatonin dissociation kinetics that provide insights into the selectivity between melatonin receptor subtypes. A membrane-buried lateral ligand entry channel is observed in both MT1 and MT2, but in addition the MT2 structures reveal a narrow opening towards the solvent in the extracellular part of the receptor. We provide functional and kinetic data that support a prominent role for intramembrane ligand entry in both receptors, and suggest that there might also be an extracellular entry path in MT2. Our findings contribute to a molecular understanding of melatonin receptor subtype selectivity and ligand access modes, which are essential for the design of highly selective melatonin tool compounds and therapeutic agents.


Subject(s)
Electrons , Lasers , Models, Molecular , Receptor, Melatonin, MT2/chemistry , Receptor, Melatonin, MT2/metabolism , Crystallization , Diabetes Mellitus, Type 2/genetics , Humans , Indenes/chemistry , Indenes/metabolism , Ligands , Melatonin/analogs & derivatives , Melatonin/chemistry , Melatonin/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Receptor, Melatonin, MT1/chemistry , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/genetics , Structure-Activity Relationship , Substrate Specificity
3.
Nature ; 569(7755): 284-288, 2019 05.
Article in English | MEDLINE | ID: mdl-31019306

ABSTRACT

Melatonin (N-acetyl-5-methoxytryptamine) is a neurohormone that maintains circadian rhythms1 by synchronization to environmental cues and is involved in diverse physiological processes2 such as the regulation of blood pressure and core body temperature, oncogenesis, and immune function3. Melatonin is formed in the pineal gland in a light-regulated manner4 by enzymatic conversion from 5-hydroxytryptamine (5-HT or serotonin), and modulates sleep and wakefulness5 by activating two high-affinity G-protein-coupled receptors, type 1A (MT1) and type 1B (MT2)3,6. Shift work, travel, and ubiquitous artificial lighting can disrupt natural circadian rhythms; as a result, sleep disorders affect a substantial population in modern society and pose a considerable economic burden7. Over-the-counter melatonin is widely used to alleviate jet lag and as a safer alternative to benzodiazepines and other sleeping aids8,9, and is one of the most popular supplements in the United States10. Here, we present high-resolution room-temperature X-ray free electron laser (XFEL) structures of MT1 in complex with four agonists: the insomnia drug ramelteon11, two melatonin analogues, and the mixed melatonin-serotonin antidepressant agomelatine12,13. The structure of MT2 is described in an accompanying paper14. Although the MT1 and 5-HT receptors have similar endogenous ligands, and agomelatine acts on both receptors, the receptors differ markedly in the structure and composition of their ligand pockets; in MT1, access to the ligand pocket is tightly sealed from solvent by extracellular loop 2, leaving only a narrow channel between transmembrane helices IV and V that connects it to the lipid bilayer. The binding site is extremely compact, and ligands interact with MT1 mainly by strong aromatic stacking with Phe179 and auxiliary hydrogen bonds with Asn162 and Gln181. Our structures provide an unexpected example of atypical ligand entry for a non-lipid receptor, lay the molecular foundation of ligand recognition by melatonin receptors, and will facilitate the design of future tool compounds and therapeutic agents, while their comparison to 5-HT receptors yields insights into the evolution and polypharmacology of G-protein-coupled receptors.


Subject(s)
Electrons , Lasers , Models, Molecular , Receptor, Melatonin, MT1/chemistry , Receptor, Melatonin, MT1/metabolism , Acetamides/chemistry , Acetamides/metabolism , Amino Acid Sequence , Antidepressive Agents/chemistry , Antidepressive Agents/metabolism , Crystallization , Humans , Indenes/chemistry , Indenes/metabolism , Ligands , Melatonin/analogs & derivatives , Melatonin/chemistry , Molecular Docking Simulation , Mutation , Receptor, Melatonin, MT1/agonists , Receptor, Melatonin, MT1/genetics , Receptor, Serotonin, 5-HT2C/chemistry , Structure-Activity Relationship , Substrate Specificity
4.
Nat Struct Mol Biol ; 25(9): 787-796, 2018 09.
Article in English | MEDLINE | ID: mdl-30127358

ABSTRACT

Serotonin (5-hydroxytryptamine; 5-HT) receptors modulate a variety of physiological processes ranging from perception, cognition and emotion to vascular and smooth muscle contraction, platelet aggregation, gastrointestinal function and reproduction. Drugs that interact with 5-HT receptors effectively treat diseases as diverse as migraine headaches, depression and obesity. Here we present four structures of a prototypical serotonin receptor-the human 5-HT2B receptor-in complex with chemically and pharmacologically diverse drugs, including methysergide, methylergonovine, lisuride and LY266097. A detailed analysis of these structures complemented by comprehensive interrogation of signaling illuminated key structural determinants essential for activation. Additional structure-guided mutagenesis experiments revealed binding pocket residues that were essential for agonist-mediated biased signaling and ß-arrestin2 translocation. Given the importance of 5-HT receptors for a large number of therapeutic indications, insights derived from these studies should accelerate the design of safer and more effective medications.


Subject(s)
Receptor, Serotonin, 5-HT2B/chemistry , Receptor, Serotonin, 5-HT2B/drug effects , Serotonin Receptor Agonists/pharmacology , Binding Sites , Humans , Ligands , Mutagenesis , Protein Conformation , Signal Transduction
5.
Cell ; 172(1-2): 55-67.e15, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29307491

ABSTRACT

The κ-opioid receptor (KOP) mediates the actions of opioids with hallucinogenic, dysphoric, and analgesic activities. The design of KOP analgesics devoid of hallucinatory and dysphoric effects has been hindered by an incomplete structural and mechanistic understanding of KOP agonist actions. Here, we provide a crystal structure of human KOP in complex with the potent epoxymorphinan opioid agonist MP1104 and an active-state-stabilizing nanobody. Comparisons between inactive- and active-state opioid receptor structures reveal substantial conformational changes in the binding pocket and intracellular and extracellular regions. Extensive structural analysis and experimental validation illuminate key residues that propagate larger-scale structural rearrangements and transducer binding that, collectively, elucidate the structural determinants of KOP pharmacology, function, and biased signaling. These molecular insights promise to accelerate the structure-guided design of safer and more effective κ-opioid receptor therapeutics.


Subject(s)
Molecular Docking Simulation , Receptors, Opioid, kappa/chemistry , Analgesics/chemistry , Analgesics/pharmacology , Animals , Binding Sites , HEK293 Cells , Humans , Molecular Dynamics Simulation , Morphinans/chemistry , Morphinans/pharmacology , Protein Binding , Protein Stability , Receptors, Opioid, kappa/agonists , Receptors, Opioid, kappa/metabolism , Sf9 Cells , Spodoptera
SELECTION OF CITATIONS
SEARCH DETAIL
...