Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 15: 1360188, 2024.
Article in English | MEDLINE | ID: mdl-38529399

ABSTRACT

Thyroid hormones are involved in many biological processes such as neurogenesis, metabolism, and development. However, compounds called endocrine disruptors can alter thyroid hormone signaling and induce unwanted effects on human and ecosystems health. Regulatory tests have been developed to detect these compounds but need to be significantly improved by proposing novel endpoints and key events. The Xenopus Eleutheroembryonic Thyroid Assay (XETA, OECD test guideline no. 248) is one such test. It is based on Xenopus laevis tadpoles, a particularly sensitive model system for studying the physiology and disruption of thyroid hormone signaling: amphibian metamorphosis is a spectacular (thus easy to monitor) life cycle transition governed by thyroid hormones. With a long-term objective of providing novel molecular markers under XETA settings, we propose first to describe the differential effects of thyroid hormones on gene expression, which, surprisingly, are not known. After thyroid hormones exposure (T3 or T4), whole tadpole RNAs were subjected to transcriptomic analysis. By using standard approaches coupled to system biology, we found similar effects of the two thyroid hormones. They impact the cell cycle and promote the expression of genes involves in cell proliferation. At the level of the whole tadpole, the immune system is also a prime target of thyroid hormone action.


Subject(s)
Ecosystem , Thyroid Hormones , Animals , Humans , Xenopus laevis/metabolism , Thyroid Hormones/metabolism , Thyroid Gland/metabolism , Cell Proliferation
2.
Front Genet ; 13: 996826, 2022.
Article in English | MEDLINE | ID: mdl-36386828

ABSTRACT

Tetrabromobisphenol A (TBBPA) is a potent flame retardant used in numerous appliances and a major pollutant in households and ecosystems. In vertebrates, it was shown to affect neurodevelopment, the hypothalamic-pituitary-gonadal axis and thyroid signaling, but its toxicity and modes of actions are still a matter of debate. The molecular phenotype resulting from exposure to TBBPA is only poorly described, especially at the level of transcriptome reprogramming, which further limits our understanding of its molecular toxicity. In this work, we combined functional genomics and system biology to provide a system-wide description of the transcriptomic alterations induced by TBBPA acting on differentiating mESCs, and provide potential new toxicity markers. We found that TBBPA-induced transcriptome reprogramming affect a large collection of genes loosely connected within the network of biological pathways, indicating widespread interferences on biological processes. We also found two hotspots of action: at the level of neuronal differentiation markers, and surprisingly, at the level of immune system functions, which has been largely overlooked until now. This effect is particularly strong, as terminal differentiation markers of both myeloid and lymphoid lineages are strongly reduced: the membrane T cell receptor (Cd79a, Cd79b), interleukin seven receptor (Il7r), macrophages cytokine receptor (Csf1r), monocyte chemokine receptor (Ccr2). Also, the high affinity IgE receptor (Fcer1g), a key mediator of allergic reactions, is strongly induced. Thus, the molecular imbalance induce by TBBPA may be stronger than initially realized.

3.
Molecules ; 27(6)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35335135

ABSTRACT

Understanding ecological trajectories after mine site rehabilitation is essential to develop relevant protocols adapted for gold mining sites. This study describes the influence of a range of mine site rehabilitation and revegetation protocols on soil physicochemical parameters and microbial activities related to carbon, nitrogen and phosphorus cycles. We sampled soil from six rehabilitated mining sites in French Guiana with different plant cover (herbaceous, Cyperaceous, monoculture of Clitoria racemosa and Acacia mangium and association of C. racemosa and A. mangium). We measured the mineralization potential of organic matter by estimating the mineralization of carbon, nitrogen and phosphorus and the microbial catabolic diversity balance. The results showed an improvement in the quality of organic matter on revegetated sites with tree cover. On restored sites with fabaceous species, the microbial biomass is three times higher than non-restored sites, improving the rates of organic matter mineralization and restoring the catabolic diversity to the level of natural Guyanese soils. These results confirm that the establishment of fabaceous species under controlled conditions significantly improves the restoration of microbial communities in mining soils.


Subject(s)
Mining , Soil Microbiology , Guyana , Soil , Trees/metabolism
4.
Front Microbiol ; 13: 1075274, 2022.
Article in English | MEDLINE | ID: mdl-36875534

ABSTRACT

Halophilic microorganisms have long been known to survive within the brine inclusions of salt crystals, as evidenced by the change in color for salt crystals containing pigmented halophiles. However, the molecular mechanisms allowing this survival has remained an open question for decades. While protocols for the surface sterilization of halite (NaCl) have enabled isolation of cells and DNA from within halite brine inclusions, "-omics" based approaches have faced two main technical challenges: (1) removal of all contaminating organic biomolecules (including proteins) from halite surfaces, and (2) performing selective biomolecule extractions directly from cells contained within halite brine inclusions with sufficient speed to avoid modifications in gene expression during extraction. In this study, we tested different methods to resolve these two technical challenges. Following this method development, we then applied the optimized methods to perform the first examination of the early acclimation of a model haloarchaeon (Halobacterium salinarum NRC-1) to halite brine inclusions. Examinations of the proteome of Halobacterium cells two months post-evaporation revealed a high degree of similarity with stationary phase liquid cultures, but with a sharp down-regulation of ribosomal proteins. While proteins for central metabolism were part of the shared proteome between liquid cultures and halite brine inclusions, proteins involved in cell mobility (archaellum, gas vesicles) were either absent or less abundant in halite samples. Proteins unique to cells within brine inclusions included transporters, suggesting modified interactions between cells and the surrounding brine inclusion microenvironment. The methods and hypotheses presented here enable future studies of the survival of halophiles in both culture model and natural halite systems.

5.
Microorganisms ; 9(8)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34442781

ABSTRACT

Successive years of gold mining in French Guiana has resulted in soil degradation and deforestation leading to the pollution and erosion of mining plots. Due to erosion and topography, gold panning sites are submitted to hydromorphy during rainfall and groundwater increases. This original study focused on characterizing the impact of hydromorphic anaerobic periods on bio-geochemical cycles. We sampled soil from five rehabilitated sites in French Guiana, including sites with herbaceous vegetation and sites restored with fabaceous plants, Clitoria racemosa (Cli) mon-oculture, Acacia mangium (Aca) monoculture, Clitoria racemosa and Acacia mangium (Mix) bi-culture. We conducted mesocosm experiments where soil samples were incubated in anaerobic conditions for 35 days. To evaluate the effect of anaerobic conditions on biogeochemical cycles, we measured the following parameters related to iron-reducing bacteria and sulfate-reducing bacteria metabolism throughout the experiment: CO2 release, carbon dissolution, sulphide production and sulphate mobilization. We also monitored the solubilization of iron oxyhydroxides, manganese oxides, aluminum oxides and mercury in the culture medium. Iron-reducing bacteria (IRB) and sulfate-reducing bacteria (SRB) are described as the major players in the dynamics of iron, sulfur and metal elements including mercury in tropical environments. The results revealed two trends in these rehabilitated sites. In the Aca and Mix sites, bacterial iron-reducing activity coupled with manganese solubilization was detected with no mercury solubilization. In herbaceous sites, a low anaerobic activity coupled with sulphide production and mercury solubilization were detected. These results are the first that report the presence and activity of iron- and sulfate-reductive communities at rehabilitated mining sites and their interactions with the dynamics of metallic elements and mercury. These results report, however, the positive impact of ecological restoration of mining sites in French Guiana by reducing IRB and SRB activities, the potential mobility of mercury and its risk of transfer and methylation.

6.
Dev Dyn ; 250(6): 779-787, 2021 06.
Article in English | MEDLINE | ID: mdl-33527613

ABSTRACT

Amphibians display very diverse life cycles and development can be direct, where it occurs in ovo and a juvenile hatches directly, or biphasic, where an aquatic larva hatches and later undergoes metamorphosis followed by sexual maturation. In both cases, metamorphosis, corresponds to the post embryonic transition (PETr). A third strategy, only found in Urodeles, is more complex as larvae reach sexual maturity before metamorphosis, which can become accessory. The resulting paedomorphs retain their larval characters and keep their aquatic habitat. Does it mean that paedomorphs do not undergo PETr? Recent work using high throughput technologies coupled to system biology and developmental endocrinology revisited this question and provided novel datasets indicating that a paedomorph's "larval" tissue undergoes a proper developmental transition. Together with historical data, we propose that this transition is a marker of the PETr, which would be distinct from metamorphosis. This implies that (a) complex life cycles would result from the uncoupling of PETr and metamorphosis, and (b) biphasic life cycles would be a special cases where they occur simultaneously.


Subject(s)
Amphibians/growth & development , Larva/growth & development , Life Cycle Stages , Metamorphosis, Biological/physiology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...