Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 12(9): e2202550, 2023 04.
Article in English | MEDLINE | ID: mdl-36527264

ABSTRACT

Engineering living bone tissue of defined shape on-demand has remained a challenge. 3D bioprinting (3DBP), a biofabrication process capable of yielding cell constructs of defined shape, when combined with developmental engineering can provide a possible path forward. Through the development of a bioink possessing appropriate rheological properties to carry a high cell load and concurrently yield physically stable structures, printing of stable, cell-laden, single-matrix constructs of anatomical shapes is realized without the need for fugitive or support phases. Using this bioink system, constructs of hypertrophic cartilage of predesigned geometry are engineered in vitro by printing human mesenchymal stromal cells at a high density to drive spontaneous condensation and implanted in nude mice to evoke endochondral ossification. The implanted constructs retain their prescribed shape over a 12-week period and undergo remodeling to yield ossicles of the designed shape with neovascularization. Microcomputed tomography, histological, and immunohistochemistry assessments confirm bone tissue characteristics and the presence of human cells. These results demonstrate the potential of 3DBP to fabricate complex bone tissue for clinical application.


Subject(s)
Bioprinting , Mice , Animals , Humans , Bioprinting/methods , Mice, Nude , X-Ray Microtomography , Tissue Engineering/methods , Bone and Bones , Tissue Scaffolds/chemistry , Printing, Three-Dimensional
2.
Int J Mol Sci ; 23(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35897762

ABSTRACT

In multicellular organisms, cells are organized in a 3-dimensional framework and this is essential for organogenesis and tissue morphogenesis. Systems to recapitulate 3D cell growth are therefore vital for understanding development and cancer biology. Cells organized in 3D environments can evolve certain phenotypic traits valuable to physiologically relevant models that cannot be accessed in 2D culture. Cellular spheroids constitute an important aspect of in vitro tumor biology and they are usually prepared using the hanging drop method. Here a 3D printed approach is demonstrated to fabricate bespoke hanging drop devices for the culture of tumor cells. The design attributes of the hanging drop device take into account the need for high-throughput, high efficacy in spheroid formation, and automation. Specifically, in this study, custom-fit, modularized hanging drop devices comprising of inserts (Q-serts) were designed and fabricated using fused filament deposition (FFD). The utility of the Q-serts in the engineering of unicellular and multicellular spheroids-synthetic tumor microenvironment mimics (STEMs)-was established using human (cancer) cells. The culture of spheroids was automated using a pipetting robot and bioprinted using a custom bioink based on carboxylated agarose to simulate a tumor microenvironment (TME). The spheroids were characterized using light microscopy and histology. They showed good morphological and structural integrity and had high viability throughout the entire workflow. The systems and workflow presented here represent a user-focused 3D printing-driven spheroid culture platform which can be reliably reproduced in any research environment and scaled to- and on-demand. The standardization of spheroid preparation, handling, and culture should eliminate user-dependent variables, and have a positive impact on translational research to enable direct comparison of scientific findings.


Subject(s)
Neoplasms , Spheroids, Cellular , Humans , Neoplasms/genetics , Printing, Three-Dimensional , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...