Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 177: 117066, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981242

ABSTRACT

BACKGROUND: The immunomodulatory imide drugs (IMiDs) thalidomide, lenalidomide and pomalidomide may exhibit therapeutic efficacy in the prostate. In lower urinary tract symptoms (LUTS), voiding and storage disorders may arise from benign prostate hyperplasia, or overactive bladder. While current therapeutic options target smooth muscle contraction or cell proliferation, side effects are mostly cardiovascular. Therefore, we investigated effects of IMiDs on human detrusor and porcine artery smooth muscle contraction, and growth-related functions in detrusor smooth muscle cells (HBdSMC). METHODS: Cell viability was assessed by CCK8, and apoptosis and cell death by flow cytometry in cultured HBdSMC. Contractions of human detrusor tissues and porcine interlobar and coronary arteries were induced by contractile agonists, or electric field stimulation (EFS) in the presence or absence of an IMID using an organ bath. Proliferation was assessed by EdU assay and colony formation, cytoskeletal organization by phalloidin staining, RESULTS: Depending on tissue type, IMiDs inhibited cholinergic contractions with varying degree, up to 50 %, while non-cholinergic contractions were inhibited up to 80 % and 60 % for U46619 and endothelin-1, respectively, and EFS-induced contractions up to 75 %. IMiDs reduced viable HBdSM cells in a time-dependent manner. Correspondingly, proliferation was reduced, without showing pro-apoptotic effects. In parallel, IMiDs induced cytoskeletal disorganization. CONCLUSIONS: IMiDs exhibit regulatory functions in various smooth muscle-rich tissues, and of cell proliferation in the lower urinary tract. This points to a novel drug class effect for IMiDs, in which the molecular mechanisms of action of IMiDs merit further consideration for the application in LUTS.

2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 1219-1231, 2024 02.
Article in English | MEDLINE | ID: mdl-37658212

ABSTRACT

Smooth muscle contraction by Pim kinases and ZIPK has been suggested, but evidence for lower urinary tract organs or using Pim-selective inhibitor concentrations is not yet available. Here, we assessed effects of the Pim inhibitors AZD1208 and TCS PIM-1 and the dual ZIPK/Pim inhibitor HS38 on contractions of human prostate and bladder tissues and of porcine interlobar arteries. Human tissues were obtained from radical prostatectomy and radical cystectomy and renal interlobar arteries from pigs. Contractions were studied in an organ bath. Noradrenaline-, phenylephrine- and methoxamine-induced contractions were reduced (up to > 50%) with 500-nM AZD1208 in prostate tissues and to lesser degree and not consistently with all agonists in interlobar arteries. A total of 100-nM AZD1208 or 500-nM TCS PIM-1 did not affect agonist-induced contractions in prostate tissues. Decreases in agonist-induced contractions with 3-µM HS38 in prostate tissues and interlobar arteries were of small extent and did not occur with each agonist. Carbachol-induced contractions in detrusor tissues were unchanged with AZD1208 (500 nM) or HS38. Electric field stimulation-induced contractions were not affected with AZD1208 or HS38 in any tissue, but slightly reduced with 500-nM TCS PIM-1 in prostate tissues. Concentration-dependent effects of Pim inhibitors suggest lacking Pim-driven smooth muscle contraction in the prostate, bladder, and interlobar arteries but point to organ-specific functions of off-targets. Procontractile functions of ZIPK in the prostate and interlobar arteries may be limited and are lacking in the detrusor.


Subject(s)
Biphenyl Compounds , Muscle, Smooth, Vascular , Prostate , Proto-Oncogene Proteins c-pim-1 , Thiazolidines , Male , Humans , Animals , Swine , Urinary Bladder , Death-Associated Protein Kinases/pharmacology , Muscle Contraction
3.
Front Pharmacol ; 14: 1105427, 2023.
Article in English | MEDLINE | ID: mdl-37188272

ABSTRACT

Background: NUAKs promote myosin light chain phosphorlyation, actin organization, proliferation and suppression of cell death in non-muscle cells, which are critical for smooth muscle contraction and growth. In benign prostatic hyperplasia (BPH), contraction and growth in the prostate drive urethral obstruction and voiding symptoms. However, a role of NUAKs in smooth muscle contraction or prostate functions are unknown. Here, we examined effects of NUAK silencing and the presumed NUAK inhibitors, HTH01-015 and WZ4003 on contraction and growth-related functions in prostate stromal cells (WPMY-1) and in human prostate tissues. Methods: Effects of NUAK1 and -2 silencing, HTH01-015 and WZ4003 on matrix plug contraction, proliferation (EdU assay, Ki-67 mRNA), apoptosis and cell death (flowcytometry), viability (CCK-8) and actin organization (phalloidin staining) were examined in cultured WPMY-1 cells. Effects of HTH01-015 and WZ4003 on smooth muscle contraction were assessed in organ bath experirments with human prostate tissues. Results: Effects of silencing were most pronounced on proliferation and cell death, resulting in decreases of proliferation rate by 60% and 70% by silencing of NUAK1 and NUAK2 (compared to scramble siRNA-transfected controls), decreases in Ki-67 by 75% and 77%, while numbers of dead cells after silencing of NUAK1 and NUAK2 amounted to 2.8 and 4.9 fold of scramble-transfected controls. Silencing of each isoform was paralleled by reduced viability, breakdown in actin polymerization, and partial decreases in contractility (maximally 45% by NUAK1 silencing, 58% by NUAK2 silencing). Effects of silencing were mimicked by HTH01-015 and WZ4003, with numbers of dead cells amounting up to 16.1 fold or 7.8 fold with HTH01-015 or WZ4003, compared to solvent-treated controls. Using concentrations of 500 nM, neurogenic contractions of prostate tissues were inhibited partly by HTH01-015 and U46619-induced contractions were inhibited partly by HTH01-015 and WZ4003, while α1-adrenergic and endothelin-1-induced contractions remained unaffected. Using 10 µM, inhibition of endothelin-1-induced contractions by both inhibitors and inhibition of α1-adrenergic contractions by HTH01-015 added to effects seen by 500 nM. Conclusion: NUAK1 and -2 suppress cell death and promote proliferation in prostate stromal cells. A role in stromal hyperplasia appears possible in BPH. Effects of NUAK silencing are mimicked by HTH01-015 and WZ4003.

SELECTION OF CITATIONS
SEARCH DETAIL
...